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Abstract

Learning in models with discrete latent variables
is challenging due to high variance gradient es-
timators. Generally, approaches have relied on
control variates to reduce the variance of the RE-
INFORCE estimator. Recent work (Jang et al.,
2016; Maddison et al., 2016) has taken a different
approach, introducing a continuous relaxation of
discrete variables to produce low-variance, but
biased, gradient estimates. In this work, we com-
bine the two approaches through a novel control
variate that produces low-variance, unbiased gra-
dient estimates. Then, we introduce a novel con-
tinuous relaxation and show that the tightness of
the relaxation can be adapted online, removing
it as a hyperparameter. We show state-of-the-art
variance reduction on benchmark generative mod-
eling and structured prediction tasks, generally
leading to faster convergence to a better final log
likelihood.

1. Introduction

Models with discrete latent variables are ubiquitous in ma-
chine learning: mixture models, Markov Decision Processes
in reinforcement learning (RL), generative models for struc-
tured prediction, and, recently, models with hard attention
(Mnih et al., 2014) and memory networks (Zaremba &
Sutskever, 2015). However, when the discrete latent vari-
ables cannot be marginalized out analytically, maximizing
objectives over these models using REINFORCE-like meth-
ods (Williams, 1992) is challenging due to high-variance gra-
dient estimates obtained from sampling. Most approaches
to reducing this variance have focused on developing clever
control variates (Mnih & Gregor, 2014; Titsias & Lazaro-
Gredilla, 2015; Gu et al., 2015; Mnih & Rezende, 2016).
Recently, Jang et al. (2016) and Maddison et al. (2016)
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independently introduced a novel distribution, the Gumbel-
Softmax or Concrete distribution, that continuously relaxes
discrete random variables. Replacing every discrete random
variable in a model with a Concrete random variable results
in a continuous model where the reparameterization trick is
applicable (Kingma & Welling, 2013; Rezende et al., 2014).
The gradients are biased with respect to the discrete model,
but can be used effectively to optimize large models. The
tightness of the relaxation is controlled by a temperature
hyperparameter which must be tuned to balance bias versus
variance.

We sought an estimator that is low variance, unbiased, and
does not require tuning additional hyperparameters. To
construct such an estimator, we introduce a control variate
based on the difference between the REINFORCE and the
reparameterization trick gradient estimators for the relaxed
model. We call this the REBAR gradient estimator, because
it combines REINFORCE gradients with gradients of the
Concrete relaxation. Next, we show that a small modifica-
tion to the Concrete relaxation connects REBAR to MuProp
in the high temperature limit. Finally, because REBAR is
unbiased for all temperatures, we show that the tempera-
ture can be optimized online to reduce variance further and
relieve the burden of setting an additional hyperparameter.

In our experiments, we use REBAR to train sigmoid belief
networks (SBNs) for generative modeling on the MNIST
and Omniglot datasets and structured prediction on MNIST.
Across tasks, we show that REBAR has state-of-the-art
variance reduction which generally translates to faster con-
vergence and better final log likelihoods. Although we focus
on binary variables for simplicity, this work is equally appli-
cable to categorical variables.

2. Background

For clarity, we first consider a simplified scenario and ex-
pand on it in the Appendix. Let b ~ Bernoulli () be a
vector of factorial binary random variables parameterized
by 0. We wish to maximize E, ) [f(b,0)] , where f (b, 0) is
differentiable w.r.t. , and we suppress the dependence of
p(b) on 0 to reduce notational clutter. This covers a wide
range of discrete latent variable problems; for example, in
variational inference f (b, §) would be the stochastic varia-
tional lower bound.



REINFORCing Concrete with REBAR

Typically, this problem has been approached by gradient
ascent, which requires efficiently estimating

d of(b,0)

E [f(b,0)] = E
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In practice, the first term can be estimated effectively with a
single Monte Carlo sample, however, a naive single sample
estimator of the second term has high variance. Because the
dependence of f(b,#) on @ is straightforward to account for
and to simplify exposition, we assume that f(b,6) = f(b)
does not depend on # and concentrate on the second term.

2.1. Variance reduction through control variates

Paisley et al. (2012); Ranganath et al. (2014); Mnih & Gre-
gor (2014); Gu et al. (2015) show that carefully designed
control variates can reduce the variance of the second term
significantly. Unfortunately, even with a control variate, the
second term can still have large variance.

2.2. Continuous relaxations for discrete variables

Alternatively, following Maddison et al. (2016), we can pa-
rameterize b as b = H(z), where H is the element-wise hard
threshold function! and z is a vector of factorial Logistic
random variables defined element-wise by

1
Tlog

0

z = g(u, ) =log T
where u ~ Uniform(0, 1). Notably, z is differentiably repa-
rameterizable (Kingma & Welling, 2013; Rezende et al.,
2014), but the discontinuous hard threshold function pre-
vents us from using the reparameterization trick directly.
Replacing all occurrences of the hard threshold function
with a continuous relaxation H(z) ~ o(z) = 0 (%) =
(1 + exp(—%))~! however results in a reparameterizable
computational graph®>. A > 0 can be thought of as a tem-
perature that controls the tightness of the relaxation (at low
temperatures, the relaxation is nearly tight). This generally
results in a low-variance, but biased Monte Carlo estima-
tor for the discrete model. In practice, A must be tuned to
balance bias versus variance.

3. REBAR

We seek a low-variance, unbiased gradient estimator. In-
spired by the Concrete relaxation, our strategy will be to
construct a control variate based on the difference between

'H(z) =1ifz>0and H(z) =0if z < 0.

The choice of continuous relaxation for f is not unique, and
the effectiveness and computational cost of the method depend
on this choice. For the models considered here, f is also well
defined for continuous values, and empirically this performs well
(Maddison et al., 2016; Jang et al., 2016).

the REINFORCE gradient estimator for the relaxed model
and the gradient estimator from the reparameterization trick.

We can decompose the objective into a reparameterizable
term and a residual

0
90 pI(EIj)) [f(b)] = 77@ pI(EZ) [f(ox
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where 7 is a learned scaling. Then, we can expand the
second term similarly to REINFORCE

B
36 i {f(b) -8, [f(m(z))}] N

0
pl(%) [ (f(b) - np(]:zE|b) [f(J/\(Z>)]> 20 log p(b)
0
T p(IZElb) [f(ou(z))]} .

Our key insight is that both p(z) and p(z|b) are dif-
ferentiably reparameterizable (Kingma & Welling, 2013;
Rezende et al., 2014), so we can estimate most terms with
low variance. Putting the terms together, we arrive at

E Hf(H(z)) - nf(O,\(é))} % log py(H (2))

p(u,v)
ORI

where u,v ~ Uniform(0,1), z = ¢(u,0), and 2 =
g(v, H(z),0) is the differentiable reparameterization for
z|b (Appendix 6.2). The REBAR estimator is the single
sample Monte Carlo estimator of this expectation. To re-
duce computation and variance, we couple v and v using
common random numbers (Owen, 2013). We estimate 7 by
minimizing the variance of the Monte Carlo estimator with
SGD.

3.1. Rethinking the relaxation

For the relaxation, o) (z) — % as A — oo; this is clearly a
poor approximation and will lead to an ineffective control
variate. Alternatively, consider the relaxation

A+ A+1 0 1 U
H(z) ~ 1 —1 .
(2) "( Nr) BTty
As A — oo, the relaxation converges to the mean, ¢, and
still as A — 0, the relaxation becomes exact.

Then, as A — oo, the REBAR estimator converges
to [f(H(2)) —nf(0)] % log py(H (z)), which is MuProp
without the linear term. We refer to this estimator as Sim-
pleMuProp in the results.
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Figure 1. Log variance of the gradient estimator for the single layer nonlinear model on the MNIST generative modeling task and the
structured prediction task. All of the estimators are unbiased, so their variance is directly comparable. We estimated moments from
exponential moving averages (with decay=0.999; we found that the results were robust to the exact value). The temperature is shown in

parenthesis where relevant.

3.2. Optimizing temperature (\)

The REBAR gradient estimator is unbiased for any choice
of A > 0, so we can optimize A to minimize the variance
of the estimator without affecting its unbiasedness. This
allows the tightness of the relaxation to be adapted online
jointly with the optimization of the parameters and relieves
the burden of choosing A ahead of time.

4. Experiments

As our goal was variance reduction to improve optimiza-
tion, we compared our method to the state-of-the-art un-
biased single-sample gradient estimators, NVIL (Mnih &
Gregor, 2014) and MuProp (Gu et al., 2015), and the state-
of-the-art biased single-sample gradient estimator Gumbel-
Softmax/Concrete (Jang et al., 2016; Maddison et al., 2016)
by measuring the variance of the gradient estimators and
their progress on the training objective. We follow the ex-
perimental setup established in (Maddison et al., 2016) to
evaluate the methods on generative modeling and structured
prediction tasks.

4.1. Learning sigmoid belief networks (SBNs)

We trained SBNs on several standard benchmark tasks. We
follow the setup established in (Maddison et al., 2016).
Briefly, we used the statically binarized MNIST digits from
Salakhutdinov & Murray (2008) and a fixed binarization
of the Omniglot character dataset. We used the standard
splits into training, validation and test sets. The network
used several layers of 200 stochastic binary units interleaved
with deterministic nonlinearities. In our experiments, we
used either a linear deterministic layer (denoted linear) or 2
layers of 200 tanh units (denoted nonlinear).

4.1.1. GENERATIVE MODELING

For generative modeling, we maximized a single-sample
variational lower bound on the log likelihood. We performed

amortized inference (Kingma & Welling, 2013; Rezende
et al., 2014) with an inference network with similar archi-
tecture in the reverse direction.

To measure the variance of the gradient estimators, we fol-
low a single optimization trajectory and use the same ran-
dom numbers for all methods. We plot the log variance
of the unbiased gradient estimators in Figure 1 and Ap-
pendix Figure 2 for MNIST (and Appendix Figure 4 for
Omniglot). REBAR produced the lowest variance across
linear and nonlinear models for both tasks. The reduction
in variance was especially large for the linear models. For
the nonlinear model, REBAR (0.1) reduced variance at the
beginning of training, but its performance degraded later in
training. REBAR was able to adaptively change the tem-
perature as optimization progressed and retained superior
variance reduction. We also observed that SimpleMuProp
was a surprisingly strong baseline that improved signifi-
cantly over NVIL. It performed similarly to MuProp despite
not explicitly using the gradient of f.

Generally, lower variance gradient estimates lead to faster
optimization of the objective and convergence to a better
final value (Table 1). For the nonlinear model, the Concrete
estimator underperformed optimizing the training objective
on both datasets.

4.1.2. STRUCTURED PREDICTION ON MNIST

We implemented the structured prediction task described by
Raiko et al. (2014), where we modeled the bottom half of
an MNIST digit conditional on the top half. We optimized
the single sample lower bound on the log likelihood.

As before, we found that REBAR significantly reduced
variance (Appendix Figure 6). In some configurations,
MuProp excelled, especially with the single layer linear
model. Again, the training objective performance generally
mirrored the reduction in variance of the gradient estimator
(Table 1, Appendix Figure 7).
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MNIST gen. NVIL MuProp REBAR (0.1) REBAR Concrete (0.1)
Linear 1 layer —-112.61 —111.8 —111.9 —111.5 —111.34
Linear 2 layer —99.44 —-99.16 —99.14 —98.82 -99.6
Nonlinear —102.1 —101.5 —101.7 —101.14 —103.2
Omniglot gen.

Linear 1 layer —117.43 —117.04 —116.93 —116.86 —117.3
Linear 2 layer —109.93 —109.63 —109.07 —109.14 —110
Nonlinear —110.4 —109.7 —109 —108.84 —110.9
MNIST struct. pred.

Linear 1 layer —69.15 —64.31 —65.75 —65.24 —65.53
Linear 2 layer —68.88 —63.68 —65.53 —61.74 —66.89
Nonlinear layer — —54.01 —47.58 —47.34 —46.44 —47.09

Table 1. Mean training variational lower bound over 4 trials with different random initializations. The standard error of the mean is
given in Appendix Table 2. We bolded the best performing method (up to standard error) for each task. We report trials using the best

performing learning rate for each task.

5. Conclusion

Inspired by the Concrete relaxation, we introduced REBAR,
a novel control variate for REINFORCE, and demonstrated
that it greatly reduces the variance of the gradient estimator.
‘We also showed that with a modification to the relaxation,
REBAR and MuProp are closely related in the high tem-
perature limit. Moreover, we showed that we can adapt the
temperature online and that it further reduces variance.

It would be natural to explore the extension to the multi-
sample case (e.g., VIMCO (Mnih & Rezende, 2016)),
to leverage the layered structure in our models using Q-
functions, and to apply this approach to reinforcement learn-
ing.
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6. Appendix
6.1. Review of control variates

Suppose we want to estimate E,.[f («)] for an arbitrary func-
tion f. The variance of the naive Monte Carlo estimator
E.[f(2)] = 3, f(z'), with 2!, ...,z ~ p(x), can be
reduced by introducing a control variate g(x). In particular,

Elf(x)] ~ (,1 > s - ng(xf')) +7Elg(@)]

is an unbiased estimator for any value of 7. We can choose
7 to minimize the variance of the estimator and it is straight-
forward to show that the optimal one is

_ Cov(f,9)
Var(g) ’

and it reduces the variance of the estimator by (1—p(f, g)?).
So, if we can find a g that is correlated with f, we can reduce
the variance of the estimator. If we cannot compute E[g],
we can use a low-variance estimator §. This is the approach
we take. Of course, we could define g = g — g, which has
zero mean, as the control variate, however, this obscures the
interpretability of the control variate.

6.2. Reparameterization for z|b

Now, we describe how to reparameterize p(z|b). We can
sample from z|b by noting the point v’ where g(u',8) = 0
and sampling v ~ Uniform(0, 1) and then scaling it to the
interval [/, 1] if b = 1 or [0, u/] otherwise. Then we can
apply g to this value. Define this composed function as
g(v,b,0). Note that g is also differentiable.

6.3. Multilayer stochastic networks

Suppose we have multiple layers of stochastic units (i.e.,
b={b1,ba,...,b,}) where, p(b) factorizes as

p(bin) = p(bl)p(b2|b1) < p(bnlbp_1),

and similarly for the underlying Logistic random variables
p(21.n,) recalling that b; = H(z;). We can define a relaxed
distribution over z1., where we replace the hard threshold
function H (z) with a continuous relaxation o (z). We refer
to the relaxed distribution as g(z1.,,).

We can take advantage of the structure of p, by using the fact
that the high variance REINFORCE term of the gradient
also decomposes

ERLCETCIE o R U e

)



REINFORCing Concrete with REBAR

log(Var(gradient estimator))

log(Var(gradient estimator))

NVIL
SimpleMuProp
MuProp
REBAR (0.1)
REBAR

i
1000
Steps (thousands)

i
500

i
1500

2000

L
500

L
1000

Steps (thousands)

L
1500

2000

Figure 2. Log variance of the gradient estimator for the one layer linear model (left) and two layer linear model (right) on the MNIST
generative modeling task.
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nonlinear model (right) on the MNIST generative modeling task. We plot 4 trials over different random initializations for each method
with the median trial highlighted.
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Figure 6. Log variance of the gradient estimator for the single layer linear model (left) and two layer linear model (right) on the structured
prediction task.
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MNIST gen. NVIL MuProp REBAR (0.1) REBAR Concrete (0.1)
Linear 1 layer —112.61 £ 0.05 —111.8£0.1 —111.9+ 0.2 —111.5+0.1 —111.34 £+ 0.06
Linear 2 layer —99.44 + 0.03 —99.16 £+ 0.03 —99.14 £+ 0.03 —98.82 1 0.06 —99.6 £0.1
Nonlinear —102.1£0.3 —101.5£0.2 —101.7+0.2 —101.14 4+ 0.09 —103.2+0.2
Omniglot gen.

Linear 1 layer —117.43 +0.04 —117.04 + 0.02 —116.93 4+ 0.03 —116.86 1+ 0.04 —117.3 £ 0.06
Linear 2 layer —109.93 £ 0.1 —109.63 £0.08 —109.07 & 0.02 —109.14 £ 0.03 —110 £ 0.08
Nonlinear —110.4+0.1 —109.7 £ 0.2 —109 +£0.08 —108.84 %+ 0.07 —110.9 £ 0.2
MNIST struct. pred.

Linear 1 layer —69.154+0.02 —64.31 4 0.01 —65.75 £ 0.02 —65.244 £+ 0.009 —65.53 + 0.01
Linear 2 layer —68.88 £+ 0.04 —63.68 £+ 0.02 —65.525 + 0.004 —61.74 + 0.02 —66.89 + 0.04
Nonlinear layer —54.01 £ 0.03 —47.58 £+ 0.04 —47.34 £ 0.02 —46.44 £+ 0.03 —47.09 £ 0.02

Table 2. Mean training variational lower bound over 4 trials with different random initializations and standard error of the mean. We
report trials using the best performing learning rate for each task.

Focusing on the i*" term, we have reparameterizable. Note that due to the switch between sam-
P pling from p and sampling from g, this approach requires n
[ f(b) %0 log p(bi|bi1)] = passes through the network (one pass per layer).
p(b)

(£ % log p(bi bil)” _ 6.4. Test log-likelihood
Although our primary focus was optimization, for com-
which suggests the following control variate pleteness, we include results on the test set in Appendix
9 Table 3 computed with a 100-sample lower bound (Burda
E [ E  [f(b1:-1, O'/\(Zi;n))]:| — log p(b;|b;—1)et al., 2015). Improvements on the training variational lower
p(zilbisbi-1) [a(zit1in]2i) 90 bound do not directly translate into improved test log like-
for the middle expectation. Similarly to the single layer ~ lithood. Previous work (Maddison et al., 2016) showed
case, we can debias the control variate with terms that are that regularizing the inference network alone was sufficient

p(b1:i—1) [P(bilbi—1) [P(bit1:n]bs)
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MNIST gen. NVIL MuProp REBAR (0.1) REBAR Concrete (0.1)
Linear 1 layer —108.4+ 0.2 —108 £ 0.2 —107.7 £ 0.1 —107.48 £0.09 —106.76 & 0.09
Linear 2 layer —96.39 + 0.08 —96.11 + 0.08 —95.6 + 0.04 —95.67 1 0.03 —95.64 £ 0.06
Nonlinear —100+ 0.1 —100.5+ 0.1 —100.6 £ 0.1 —100.59 £+ 0.07 —99.64 4 0.07
Omniglot gen.

Linear 1 layer —117.54 4 0.06 —117.7 £ 0.04 —117.67 £ 0.07 —117.72+0.03 —117.54 1 0.04
Linear 2 layer —111.46 +£0.04 —111.24+0.06 —110.83 +0.04 —110.87 % 0.02 —111.29 £ 0.03
Nonlinear —116.75 £+ 0.05 —117.62 + 0.07 —117.89 + 0.04 —118.2 £ 0.1 —116.73 & 0.1
MNIST struct. pred.

Linear 1 layer —66.11 + 0.02 —65.63 £ 0.01 —65.59 + 0.01 —65.58 + 0.03 —65.31 4 0.02
Linear 2 layer —63.22 £ 0.02 —62.08 £ 0.05 —62.07 £ 0.04 —61.68 1 0.02 —61.919 £ 0.01
Nonlinear —61.22 £ 0.04 —61.43 £0.03 —61.27 + 0.02 —61.27 + 0.02 —61.05 1+ 0.04

Table 3. Mean test 100-sample variational lower bound on the log likelihood (Burda et al., 2015) over 4 random initializations with
standard error of the mean. We report the best performing learning rate for each task based on the validation set.

to prevent overfitting. This led us to hypothesize that the
overfitting results was primarily due to overfitting in the
inference network (q). To test this, we trained a separate
inference network on the validation and test sets, taking care
not to affect the model parameters. This reduced overfitting,
but did not completely resolve the issue, suggesting that the
generative and inference networks jointly overfit.

6.5. Implementation details

We used Adam (Kingma & Ba, 2014) with a constant learn-
ing rate from {3x107°,1x1074,3x107%,1073,3x 1073}
for the linear models and from {3 x 107°,10~*} for the
nonlinear models and decays 31 = 0.9,8; = 0.99999.
Higher learning rates caused training to diverge. We used
minibatches of 24 elements and optimized for 2 million
steps. We centered the input to the inference network with
the training data statistics. As in (Maddison et al., 2016),
all binary variables took values in {—1, 1}. We initialized
the bias of the output layer to the training data statistics
as in (Burda et al., 2015). All of the unbiased estimators
used input-dependent baselines as described in (Mnih &
Gregor, 2014). We used a 10 times faster learning rate for
the parameters of the baselines and control variate scalings.

Preliminary evaluations of the REBAR and Concrete esti-
mators over a range of A found A = 0.1 to perform well
across tasks and configurations.

6.5.1. MUPROP

We found that the linear term in the MuProp baseline was
detrimental for later layers, so we learned an additional
scaling factor to modulate the linear terms. This reduced the
variance of the MuProp learning signal beyond the algorithm
described in (Gu et al., 2015).

6.5.2. REBAR

We learned separate control variate scalings (1) for each
parameter group (e.g., the weights in the first layer, the

biases in first layer, etc.).

When computing the REBAR estimator, we leverage com-
mon random numbers to sample from b, z, and z|b. Recall
that z = g(u, ) where u is a uniform random variable,
b= H(z),and z|b = g(v,b,0). So, if we sample u uni-
formly and then generate z and b, z will be distributed
according to z|b. We can also sample from z|b by noting
the point u’ where g(v’, ) = 0 and sampling v uniformly
and then scaling it to the interval [v/,1] if b = 1 or [0, /]
otherwise. So a choice of u will determine a corresponding
choice of v which produces the same z. We propose using
this pair (u, v) as the random numbers in the reparameteri-
zation trick.

6.5.3. CONCRETE

A subtle point addressed in (Maddison et al., 2016) is that
the objective optimized by the method we called Concrete
and in Jang et al. (2016) is not a stochastic lower bound
on the marginal log likelihood. The results reported in
(Maddison et al., 2016; Jang et al., 2016) were similar and
REBAR is most similar to (Jang et al., 2016), so we chose to
compare against it. However, although the Concrete method
does not optimize a lower bound, we emphasize that we
evaluated a proper stochastic lower bound for all plots and
numbers reported (including on the training set).



