Natural-Gradient Stochastic Variational Inference for Non-Conjugate Structured Variational Autoencoder

Wu Lin * 1 Mohammad Emtiyaz Khan * 1 Nicolas Hubacher * 1 Didrik Nielsen * 1

Abstract

We propose a new method for amortized inference in graphical models that contain deep generative models. Our method generalizes existing approaches to a larger class of models where the graphical model can contain non-conjugate components. Our main contribution is the proposal of structured recognition models that preserve the correlations between all local variables. For this general class of models, we derive a scalable inference method that employs natural-gradient updates and can be implemented by reusing existing software for graphical models and deep models.

1. Introduction

In this paper, we develop a new amortized inference method for structured graphical models that contain deep generative models. Such models merge two important lines of work, namely deep learning and probabilistic inference. Several works have recently proposed these types of models [Archer et al., 2015; Krishnan et al., 2015; Johnson et al., 2016]. The first two of these works have considered modeling of time-series data with neural networks, while [Johnson et al., 2016] propose to compose a general class of conjugate latent graphical models with neural networks and call it structured variational auto-encoders (SVAE). Inspired by recent works on variational inference and deep learning, [Johnson et al., 2016] derive an inference scheme that combines ideas from message passing, stochastic variational inference (SVI), and back-propagation using the reparameterization trick.

A drawback of the method of [Johnson et al., 2016] is that it requires the graphical model to be conjugate. Another drawback is that their method does not support fully amortized inference, i.e., during test time, the method needs to run inference over some of the local variables. A final issue is that their method does not model posterior correlations among all the local latent variables.

In this paper, we propose a method that generalizes the method of [Johnson et al., 2016] to a larger class of models where the graphical model can contain non-conjugate components. Our main contribution is the proposal of structured recognition models that preserve the correlations between all local variables. For this general class of model, we derive a scalable inference method that employs natural-gradient updates and can be implemented by reusing existing software for graphical models and deep models.

Figure 1: Two examples of model classes. The left column shows the latent mixture model and the right column shows the latent state-space model. The top row shows the generative model while the bottom row shows the recognition model. Double lines indicate non-conjugate relationships, while the solid line indicate conjugate ones. In our framework, all distributions in the generative model can be non-conjugate, but the recognition model is conjugate. Our recognition models preserve structural dependencies among the local variables that are present in the original model.
2. Models and Related work

In this section, we describe the generative model as well as our variational approximations. Figure 1 gives two examples of the model classes. We consider models that employ at most two layers of local latent variables to model N observed outputs $y = \{y_1, y_2, \ldots, y_N\}$. The first layer contains continuous variables denoted by x_n, and the second layer contains finite-discrete variables z_n. We denote by x and z the sets of these two local variables for all n. We assume that the relationship between x and z is conditionally-conjugate, i.e., $p(x|z, \theta)$ to be conditionally-conjugate, i.e., $p(x|z, \theta)$ and $p(y|z, \gamma)$ need not be conditionally conjugate. Our goal is to estimate an approximation to the posterior $p(x, z, \theta, \gamma)$ where θ is the set of all global variables. Following previous works (Johnson et al., 2016; Archer et al., 2015; Krishnan et al., 2015), we model y given x using a neural-network likelihood with γ being the neural-network parameters:

\[
p(y, x, z, \theta, \gamma) = \left(\frac{p(\theta)}{\gamma(z)} \prod_{n=1}^{N} \frac{p(x_n|z_n)}{\gamma(z)}\right)
\]

Latent graphical model

Deep generative model

We assume all factors of the above distribution to be minimal exponential family distributions. This model class is a more general than the one considered by Johnson et al. (2016) because we do not require the joint distribution $p(x, z, \theta)$ to be conditionally-conjugate, i.e., $p(x|z, \theta), p(z|\theta)$ and $p(\theta)$ need not be conditionally conjugate.

Our goal is to estimate an approximation to the posterior distribution of the x, z, θ and γ. In this paper, we propose the following variational approximation with a structured recognition model:

\[
p(z, x, \theta, \gamma|y) \approx q_0(x, z|y)q(\theta)q(\gamma)
\]

The recognition model facilitates fast amortized inference which reduces computations at test time by avoiding inference over the local variables. Our proposal in this paper is slightly more general than that of Johnson et al. (2016) who consider $q_0(x, z|y) = q_0(x|y)q(z)$, i.e., an amortize inference is used for x, but $q(z)$ still need to be inferred at test time. Our structured-recognition models maintain local structure present in the model, i.e., the structure among the local variables in the variational approximation is the same as that in the generative model. Moreover, our recognition models can re-use existing conjugate factors in the generative model.

Denoting the natural parameters of $q(\theta)$ and $q(\gamma)$ specified in [1] by λ_θ and λ_γ, respectively (and $\lambda := \{\lambda_\gamma, \lambda_\theta\}$), the lower bound to be optimized is given as follows:

\[
\mathcal{L}(\phi, \lambda) := \mathbb{E}_q \left[\log p(y, x, z, \theta, y) / q(x, z, \theta, \gamma) \right]
\]

\[
= \sum_{n=1}^{N} \mathbb{E}_{q_0(x_n, z_n|y)} \left[\log p(y_n|z_n, \gamma) \right] - \mathbb{E}_{q(\theta)} \left(\sum_{k=1}^{K} \mathbb{KL}[q_0(x, z|y) \parallel p(x, z|\theta)] \right) - \mathbb{KL}[q(\theta)q(\gamma) \parallel p(\theta)p(\gamma)]
\]

Below, we give two examples of various graphical models where our work is applicable. In all these examples, we only specify $p(x, z, \theta)$ and assume that y is modeled using a neural network.

Latent Mixture Models: For finite mixture models with K mixture components, we assume a discrete assignment vector z_n whose k'th element is $z_{n,k} \in \{0, 1\}$ for every vector x_n. The distribution is shown below:

\[
p(x, z, \psi, \pi) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k p(x_n|\psi_k) | z_{nk} \right],
\]

\[
\{\psi_k, \pi_k\}_{k=1}^{K} \sim p(\theta), \quad \theta = \{\psi_k, \pi_k\}_{k=1}^{K}
\]

where ψ_k is the parameter of the distribution of the k'th mixture and π_k is the mixture proportion which sums to 1. The Gaussian mixture model is a member of this family, but we also can handle non-conjugate mixture models.

Latent State-Space Models: Consider the following state-space model (Kokkala et al., 2015):

\[
x_n = f(x_{n-1}, \theta) + q_n, \quad q_n \sim \mathcal{N}(q_n, 0, Q(\theta))
\]

where $x_0 \sim \mathcal{N}(x_0, m_0(\theta), P_0(\theta))$ and each x_n is Gaussian with its mean potentially being a non-linear function $f(x_{n-1})$ and θ are model parameters distributed according to $p(\theta)$. The prior need not be conjugate to x. Archer et al. (2015) propose a variational inference method for these types of models, but use a Gaussian posterior distribution with tri-diagonal covariance which is quite restricted. Johnson et al. (2016) consider a linear state-space model with a conjugate prior $p(\theta)$ and our work generalizes their work to nonlinear state-transitions. Krishnan et al. (2015) use RNN to model the transitions and the likelihoods and their recognition model is a bit more general than ours.

3. Main Contributions

We build upon the conjugate-computation variational inference (CVI) method of Khan & Lin (2017). This method can handle non-conjugate factors, but it does not work with recognition models. Our first contribution is to extend CVI to handle recognition models and our second contribution is to propose a structured-recognition model to simplify inference. We first give an overview of CVI and then describe our two contributions in the subsequent sections.
3.1. Conjugate-computation Variational Inference

The CVI method is based on a mirror-descent formulation of the variational lower bound optimization in the mean-parameter space. This reformulation enables natural-gradient updates for the mean-field variational inference in general non-conjugate graphical models. Stochastic variational inference (SVI) and variational message passing (VMP) can be obtained as special cases when the model is conditionally-conjugate.

Given a Bayesian network over N nodes u_i, we wish to obtain the mean-field approximation $q(u)$, where each component $q_i(u_i)$ is a minimal exponential family (denote its natural parameter by λ_i and mean parameter, which is the expectation of sufficient statistics, by μ_i). CVI assumes that conditional distributions of u_i, given the rest of the nodes u_{-i}, can be expressed as a factor between a product that is conjugate to $q_i(u_i)$ (denoted by \bar{p}_i^μ) and a factor that is non-conjugate (denoted by \hat{p}_i^λ), i.e.,

$$p(u_i|u_{-i}) \propto \bar{p}_i^\mu(u_i,u_{-i}) \times \hat{p}_i^\lambda(u_i,u_{-i}). \tag{6}$$

CVI employs a mirror-descent update in the mean-parameter space for which there is a closed-form solution. This update separately performs conjugate and non-conjugate computation as shown below:

$$\lambda_{i,t+1} = (1 - \beta_t)\lambda_{i,t} + \beta_t \left[\lambda_{i,t+1}^* + \beta_t \nabla_{\lambda_i} \mathbb{E}_q(\log \bar{p}_i^\mu) \big| \mu = \mu_i \right], \tag{7}$$

where $\lambda_{i,t+1}^*$ is the mean-field update obtained using only the conjugate term \bar{p}_i^μ. The above update is a natural-gradient update which exploits the geometry of the variational distribution. Therefore, CVI is a generalization of SVI to non-conjugate models.

3.2. CVI as an adaptive-gradient method

CVI does not directly apply to the estimation of deterministic parameters such as the parameters of the recognition model. In this section, we present a framework that enables such application of CVI. Under our framework, CVI updates can be expressed as an adaptive-gradient method, very similar to methods such as AdaGrad and RMSProp. The following claim summarizes our results.

Claim 1. Defining a Gaussian variational distribution for ϕ at iteration t as $q_t(\phi) = \mathcal{N}(\phi; \phi_t, S_t^{-1})$, the CVI update, shown below, approaches a local maximum of $\mathcal{L}(\phi, \lambda)$ for a fixed λ.

$$\phi_{t+1} = \phi_t + \beta_t S_t^{-1} \tilde{g}_t, \tag{8}$$

where $S_{t+1} = S_t - \beta_t \tilde{H}_t$ with \tilde{g}_t and \tilde{H}_t being the sample approximations to the gradient of the natural parameter $\nabla_{\phi} \lambda$ and Hessian $\nabla_{\phi} \mathbb{E}_q(\phi) \nabla_{\phi} \mathcal{L}$ at $q_t(\phi)$.

The update is obtained by optimizing an expectation of the lower bound $\mathbb{E}_q(\phi) [\mathcal{L}(\phi, \lambda)]$, followed by some reparameterization tricks. The convergence to a local maximum of $\mathcal{L}(\phi, \lambda)$ is shown in Appendix A of Maaløe et al. (2016). These updates are very similar to existing adaptive-gradient methods and we can establish a connection by approximating the Hessian by the following diagonal approximation (Martens 2014): $\nabla^2_{\phi} \mathcal{L} \approx -\text{diag}(\tilde{g}^2)$. The method most similar to ours is AROW (Crammer et al. 2009) which was originally proposed for supervised online-learning with a hinge loss. If we use $S_t^{1/2}$ instead of S_t in the update of ϕ_t, our update becomes equivalent to a noisy version of AdaGrad (Duchi et al. 2011). We can also show that, by using a different choice of the posterior $q(\phi)$, CVI updates arrive arbitrarily close to the updates of RMSProp. Finally, $q(\phi)$ can be non-Gaussian, which could be used for exploiting conjugacy in recognition models.

3.3. Structured-Recognition Models

In this section, we describe how to construct structured-recognition models that preserve the structural dependencies of the true posterior distribution of the local variables. We also show how to obtain efficient natural gradient updates and how to reuse existing software for implementation. Due to space limitations, we describe our method on one particular example of latent mixture model.

We choose a recognition model $q_0(x, z, y)$ that consists of three conditional distributions where the first and second term are conjugate to each other with respect to x_n:

$$q_0(x_n, z_n|y_n) \propto q_{\phi_y}(x_n|y_n)q_{\phi_z}(x_n|z_n)q_{\phi_x}(z_n), \tag{9}$$

where ϕ_y, ϕ_z, and ϕ_x are the parameters of recognition models that mimic the role of γ, ψ, and π in the latent MM. This can also be seen in Figure 1. The three terms need to be chosen such that computing the marginal $q_0(z_n, y_n)$ and sampling the conditional $q_0(x_n|z_n, y_n)$ is easy.

One possible way to construct such recognition models is by choosing q_0 to be a conditionally-conjugate model, e.g., the following distribution, a GMM with a Gaussian observation, can be used as $q_0(x_n, z_n|y_n)$:

$$\mathcal{N} \left(x_n | \mu_{\phi_y}, \Sigma_{\phi_y}, y_n \right) \mathcal{N} \left(z_n | \mu_{\phi_z}, \Sigma_{\phi_z} \right) \mathcal{M} \left(z_n ; \pi \right),$$

where the second and third term constitute a GMM with parameters $\phi_\gamma = \{ \mu_{1:K}, \Sigma_{1:K} \}$ and $\phi_\pi = \pi_{1:K}$, while the first term is a recognition model similar to VAE and corresponds to a Gaussian measurement $\mu_{\phi_y}(y_n)$ with mean x_n and covariance $\Sigma_{\phi_y}(y_n)$. Since this recognition model is conjugate, we can easily sample from it and also compute the marginal $q_0(z_n|y_n)$. In this case, these steps can be implemented by using the E-step in a GMM. More generally, they can be performed by reusing updates for a corresponding conditionally-conjugate model.
3.4. Natural-Gradient Updates

Given the marginal \(q_{\tilde{d}}(z_n | y_n) \) and samples \(x_n^* \) from \(q_{\tilde{d}}(x_n, z_n | y_n) \), updates of the global variables are simplified and can be implemented using a combination of the CVI updates (7) and (8). Figure 1c shows all the global variables in the variational approximation. For the global variables of the neural networks, i.e., \(\gamma \) and \(\phi_{\gamma} \), the update (8) is very similar to that of a VAE with only one difference – the prior distribution over \(x_n \) is a mixture instead of a single Gaussian prior. For the global variables of the mixture model, i.e., \(\pi \) and \(\psi \), the update (7) can be used. This update simplifies if part of the model is conjugate, e.g., when the latent graphical model is a latent GMM, the update can be implemented using variational Bayes updates (the M-step). Finally, the update for the global variables of the recognition model, i.e., \(\phi_{\psi} \) and \(\phi_{\gamma} \), can be obtained using (8) where the gradients are computed using the computation graph of the recognition model. This is also easy since the recognition model is conjugate.

Our algorithm can be implemented using existing software. As described in the previous section, sampling from the structured recognition model can be implemented by using the E-step in GMM. The update of \(\gamma \) and \(\phi_{\gamma} \) can be implemented using a slight modification of VAE, while the update for the mixture model parameters can be computed using the M-step of GMM.

4. Results

We apply our method to the mixture model discussed in Section 2. We use the 'pinwheel' dataset discussed in Johnson et al. (2016). Our results establish that using a structured recognition model gives similar results to the method of Johnson et al. (2016) when the graphical model is conjugate. An additional advantage of our method is that it also applies when the graphical model is non-conjugate.

We use 80% as training set and the rest as test set. We compare our method (SVAE estimated using CVI) to an SVAE model estimated using the method of Johnson et al. (2016), as well as a GMM model estimated using the EM algorithm. We use \(K = 5 \) mixture components for all methods. For GMM, we consider \(\theta \) to be deterministic, while for SVAE we use the conjugate priors detailed in Johnson et al. (2016) and set the latent dimensionality of \(x \) to be 2. We use 3 layers multilayer perceptron with 40 hidden units each as the observation model in SVAE. We use a minibatch size of 100 and estimated stochastic gradients using Monte Carlo approximations with 5 samples.

The top row in Fig. 2 shows the cluster assignments obtained by each method where we clearly see that SVAE methods obtain much better results than GMM, as expected. The bottom row in Fig. 2 shows reconstruction error on test set versus iterations, where we see that SVAE based methods gives better results than GMM.

5. Discussion

We proposed a new variational inference method that uses structured-recognition models for local variables. Our method simplifies inference by pushing all the difficult computation to the recognition model. By choosing a conditionally-conjugate recognition model, we simplify the difficult computation which ultimately reduces to sampling from the recognition model. This sampling plays a role very similar to the E-step in the EM algorithm or a local variable update in SVI. Given samples from the recognition model, we greatly simplify the update of global variables. For example, if part of the model is conditionally-conjugate, then a mean-field implementation can be used to perform natural-gradient updates (which is essentially a step in SVI). For the non-conjugate parts, we use stochastic gradients. Moreover, we also established that CVI can be used as an adaptive-gradient method for deterministic parameters, thereby connecting natural-gradients to adaptive-gradients.

We discussed application to a specific type of local variable structure. It is possible that our method is useful for more general structures. For example, this work could be extended to capture dependencies between global and local variables in recognition models. It is also possible to obtain natural-gradient updates for \(\phi \) by imposing a distribution on \(\phi \) that takes the same form as \(\theta \) and \(\gamma \).
References

