Filtering Variational Objectives

Chris J. Maddison “'?> Dieterich Lawson “* George Tucker 3 Nicolas Heess

1 3

Mohammad Norouzi

Andriy Mnih! Arnaud Doucet? Yee Whye Teh ' 2

Abstract

When used as a surrogate objective for max-
imum likelihood estimation in latent variable
models, the evidence lower bound (ELBO) pro-
duces state-of-the-art results. Inspired by this, we
consider the extension of the ELBO to a family
of lower bounds defined by a particle filter’s es-
timator of the marginal likelihood, the filtering
variational objectives (FIVOs). FIVOs take the
same arguments as the ELBO, but can exploit
a model’s sequential structure to produce tighter
bounds. Experimentally, we show uniform im-
provements over models trained with ELBO on
sequential data.

1. Introduction

There is a demand for rich generative models of high di-
mensional data with a mixture of known and unknown
structure. For example, video data has known temporal
structure, but possibly unknown spatial structure. Neural
models are candidates, however, training them in the pres-
ence of latent variables is challenging. We introduce fil-
tering variational objectives (FIVOs), a tractable family of
objectives for maximum likelihood estimation (MLE) in la-
tent variable models with sequential structure.

Denote the observations by z, an X-valued random vari-
able. We assume that x was generated via an unobserved
Z-value random variable z and joint density p(z,z) in
some family P. The goal of MLE is to recover p € P that
maximizes the marginal log-likelihood, log ( [ p(z,2) dz).
The difficulty is that the likelihood function is defined via
an intractable integral.

To circumvent marginalization, it is common to optimize a
variational lower bound (e.g., the ELBO) on the marginal
log-likelihood (Jordan et al., 1999; Beal, 2003). The ELBO
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is defined by a variational posterior distribution ¢(z|x)!,

p(z, 2)
ool {‘)g a(zl7) }
— log p(z) — KL(g(2]2) || p(2]z)) < logp(x)

and lower bounds the log marginal log-likelihood for any
choice of g(z|z). The bound is tight when ¢(z|x) matches
the true posterior p(z|x).  Thus, the joint optimum of
L(x,p,q) in p and ¢ is the MLE. In practice, we parameter-
ize p and ¢ and jointly optimize the ELBO over both sets of
parameters with stochastic gradient ascent (Hoffman et al.,
2013; Kingma & Welling, 2014; Rezende et al., 2014).

L(x,p,q) =

In practice, the family of variational posteriors is restricted
for tractability (e.g., a factored distribution). Because of
this, optimizing the ELBO tends to force the model’s poste-
rior to satisfy the factorizing assumptions of the variational
family. One strategy for addressing this is to decouple the
tightness of the bound from the quality of the variational
posterior. For example, (Burda et al., 2016) observed that
the typical ELBO is obtained as the log of an importance
weight with proposal given by the variational posterior, and
that using /N samples from the same proposal produces a
tighter bound, known as IWAE. The filtering variational ob-
jectives (FIVOs) build on this idea by treating a particle fil-
ter’s marginal log-likelihood estimator as an objective func-
tion. It is well-known that a particle filter’s marginal like-
lihood estimator has variance that scales more favourably
than simple importance sampling for models with sequen-
tial structure (Cérou et al., 2011; Bérard et al., 2014). For
this reason, we expect that FIVO will generally be a much
tighter bound on the marginal likelihood.

Other approaches to learning in neural latent variable mod-
els include (Bornschein & Bengio, 2015), who use impor-
tance sampling to approximate gradients under the poste-
rior, and (Gu et al., 2015), who use sequential Monte Carlo
to approximate gradients under the posterior. These are dis-
tinct from our contribution in the sense that inference for
the sake of estimation is the ultimate goal. To our knowl-
edge the idea of treating the output of inference as an ob-
jective in and of itself, while not completely novel, has not

'An underlying assumption here is that ¢ puts mass on any
event with positive mass under p.
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Algorithm 1 Simulating £V (21, D, q)

I: FIVO(Z 1.0, p, ¢, N):
2 {wh}iL, = {1/N}L,
3: forke{1,...,n}do

4. forie{l,...,N}do
5: 23 ~ (k| T, 215 1)
6: 2%, = CONCAT(2},,_4,2%)
7:  end for , ,

iy _ pr@ezpleie—1,21 1)
8 k(o) = T et

. N ;
9 pp= (Ei:l wllc—1ak(zi:k))

10: Py (r1:k) = DN (@1:0—1)Pk

1 {wp Yy = {wj_yan(zly) /ey ‘

12:  if resampling criteria satisfied by {w} }}¥ ; then
13: {wj,, 21, 1Ly = RSAMP({w}, 21, 1Y y)

14:  end if

15: end for

16: return log px (71.,)

17: RSAMP({w’, 2/} |):

18: fori € {1,...,N} do

19:  a ~ Categorical({w'} )
20: yi =2°

21: end for

22: return {4, ¢y},

been fully appreciated in the literature.

Also related to this work is the idea of increasing the ex-
pressiveness of the variational posterior family. For ex-
ample, (Rezende & Mohamed, 2015; Kingma et al., 2016)
augment the variational posterior with deterministic trans-
formations with fixed Jacobians, (Salimans et al., 2015) ex-
tend the variational posterior to admit a Markov chain.

We note that the idea to optimize the log estimator of a par-
ticle filter was independently and concurrently considered
in (Naesseth et al., 2017; Le et al., 2017). In (Naesseth
et al., 2017) the bound we call FIVO is cast as a tractable
lower bound on the ELBO defined by the particle filter’s
non-parameteric approximation to the posterior. (Le et al.,
2017) additionally derive an expression for FIVO’s bias as
the KL between the filter’s distribution and a certain target
process.

2. Filtering Variational Objectives (FIVOs)

Let our observations be sequences of n X'-valued ran-
dom variables denoted x1.,, where x;; = (xi,...,xj)
represents a sequence from x; to x;, inclusive. We also
assume that the data generation process relies on a se-
quence of n unobserved Z-valued latent variables de-
noted z3.,. We focus on sequential latent variable models
that factorize as a series of conditionals, p(z1.n, 21.n) =
p1(z1,21) [Teo Pk (@k, 26| @1:6—1, Z1:6—1). An example is
the hidden Markov model (HMM).

A particle filter is a sequential Monte Carlo algorithm
which propagates a population of N weighted particles for
n steps using a combination of importance sampling and
resampling steps, see Algorithm 1.

The quantity py (1.,) computed by Algorithm 1 is an un-
biased, strongly consistent estimator of p(x1.,, ) (Del Moral,
2004; 2013). By Jensen’s inequality, E[log pn (z1.)] <
log p(21.,). Thus, the basic idea behind FIVO is to treat
E[log pn (21.,)] as an objective in an of itself.

Definition. Filtering Variational Objectives. Let
log pn(x1.,) be the output of Algorithm 1 with inputs
(xlzn7p7 q, N), then Ellijlvo(xlz'rmpa Q) = ]E[]"OgﬁN(xln)]
is a filtering variational objective.

When N = 1, L¥V°(21.,,D,q) reduces to the ELBO
L(x1.n,p,q). If we never resample, then FIVO re-
duces to IWAE. Crucially, the resampling step can dra-
matically decrease the relative variance of the estimator

(Var (%)) over simple importance sampling. In

some scenarios, for example in an HMM, resampling re-
duces the scaling order of the relative variance from expo-
nential in n to linear in n (Cérou et al., 2011; Doucet &
Johansen, 2011). With some restrictions, we can show that
the relative variance of the estimator is asymptotically re-
lated to the tightness of the objective LV (211, P, q)-

Proposition. Let py(x) be an unbiased positive estimator
of p(z). Let g(N) = E[(pn (z) —p(x))C] be the 6th central
moment. If the 1st inverse moment limsup E[py(z)71] <
00 is bounded, then

1
log p(z) — Ln(x,p) = 5 var

: (ﬁN(x)

)+ o).

Proof. See Appendix. O
Intuitively, resampling allows us to discard particles with
low weight, and refocus the distribution of particles to re-
gions of higher mass under the posterior. Resampling is a
greedy process, so particles discarded at step k, could have
attained a high mass at step n. Thus, we use the standard

effective sample size (ESS) resampling criterion (Doucet &
Johansen, 2011).

2.1. Optimization

FIVOs can be optimized with the same stochastic gradi-
ent framework used for the ELBO. We assume that p and
q are parameterized in a differentiable way by 6 and ¢. If
we do not make assumptions on the sampling process, then
the score functions of each stochastic decision (sampling
z; and resampling indices a) scaled by the future learning
signal provide unbiased estimators. If z} are reparameter-
ized, the gradient arising from sampling z}, flows through
the lattice of states z}, created in the forward process (see
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Figure 1: Visualizing FIVO. (left) The forward computation produces a lattice of latent states. (right) The backward
gradient (in the reparameterized case) flows through that lattice, gradients from the objective at time 4 shown in solid red

and resampling gradients at time 3 shown in dotted blue.

Figure 1). There are are also terms of the gradient corre-
sponding to the adaptive resampling criteria decisions. In
practice, we drop those terms as well as the resampling gra-
dients Vg 4 log w,ic, which can add orders of magnitude to
the variance of this gradient estimator. Thus, we found the
best results were achieved by following just the reparam-
eterization gradient Vg 4 log pn (z1.n). See the Appendix
for the full gradient and further discussion.

3. Experiments

We sought to understand: (a) how optimizing the ELBO,
IWAE, and FIVO bounds compare in terms of final model
log-likelihoods, (b) whether there are differences in how
the trained models use the stochastic state, and (c) how
IWAE and FIVO scale with the number of particles. To ex-
plore these questions, we trained variational recurrent neu-
ral networks (VRNN) (Chung et al., 2015) with the ELBO,
IWAE, and FIVO bounds on two benchmark sequential
modeling tasks: modeling natural speech waveforms and
modeling polyphonic music. When comparing to ELBO
we increased the batch size by the number of particles given
to IWAE or FIVO. To evaluate each model p, we computed
£($1:n7p7 q)a %\XAE(xlznapa Q)v givo(wlznvpa q) and re-
port the maximum, because all are stochastic lower bounds
on the log likelihood. For training set performance see the
Appendix.

3.1. Polyphonic Music

We evaluated VRNNSs trained with the ELBO, IWAE, and
FIVO bounds on 4 polyphonic music datasets: the Notting-
ham folk tunes, the JSB chorales, the MuseData library of
classical piano and orchestral music, and the piano-midi.de
MIDI archive (Boulanger-Lewandowski et al., 2012). We
report bounds on average log likelihood per timestep.

Models trained on the FIVO bound significantly outper-
formed models trained with either the ELBO or the IWAE

bounds on all four datasets (Table 1). In some cases, the im-
provements exceeded 1.0 nat per timestep, and in all cases,
optimizing FIVO with N = 4 outperformed optimizing ei-
ther IWAE or ELBO for N = {4, 8,16}. A known pathol-
ogy when training stochastic latent state models with the
ELBO bound is that the stochastic states are unused, and
as a result, the inference network collapses to the model
(Bowman et al., 2015). To investigate this, we plot the
KL divergence from ¢(21.,,|21.,) to p(z1.,) averaged over
the dataset (Appnedix Figure 3). Indeed, the KL of mod-
els trained with ELBO collapsed during training, whereas
the KL of models trained with FIVO remained high, even
while achieving a higher log likelihood bound. In Figure
2, we also investigated how the log likelihood bound of
models trained with IWAE and FIVO scaled with the num-
ber of particles, N. FIVO continued to benefit as N in-
creased through {4, 8,16} while IWAE suffered diminish-
ing returns.

—— FIVO N=16
—— FIVO N=8
FIVO N=4
-7.6  —— IWAE N=16
IWAE N=8
IWAE N=4

-8.0

Test Log-likelihood, FIVO bound
I

0 2 4 6 8 10
1k Gradient Updates

Figure 2: Learning curves comparing models trained with
LVC and LG™® for different N on the Piano-midi.de
dataset.
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N Bound Nottingham JSB  MuseData piano-midi
ELBO -3.23 -8.61 -7.12 -1.79
4 IWAE -3.21 -8.59 -7.17 -7.81
FIVO -2.86 -6.95 -6.55 -7.72
ELBO -3.60 -8.60 -7.11 -7.83
8 IWAE -3.30 -1.53 -7.10 -7.81
FIVO -2.62 -6.69 -6.36 -7.49
ELBO -3.54 -8.60 -7.17 -7.83
16 IWAE -2.95 -7.55 -7.08 -7.81
FIVO -2.58 -6.60 -6.09 -7.19
TIMIT

N Bound 64 units 512 units

ELBO 35,908 36,981

4 IWAE 35984 34,067

FIVO 40,211 41,834

ELBO 35,612 37,902

8 IWAE 36,835 38,074

FIVO 40,912 41,666

Table 1: Test set lower bound on log likelihood comparison
of models trained with ELBO, IWAE, and FIVO objectives
and varying numbers of particles. Each set of rows delim-
ited by a bar matches the computation between methods.

3.2. Speech

Next, we evaluated the bounds on a speech waveform
dataset, TIMIT, a standard benchmark for sequential mod-
els that contains 6300 waveform utterances with an aver-
age duration of 3.1 seconds spoken by 630 different speak-
ers. We report the average log likelihood bound per se-
quence. Again, models optimized with the FIVO bound
significantly outperformed models optimized with IWAE
or ELBO, see Table 1.
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4. Appendix of Filtering Variational
Objectives

4.1. Proof of Proposition

Let py(x) be an unbiased positive estimator of p(z). Let
g(N) = E[(pn(x) — p(x))%] be the 6th central moment.
If the 1st inverse moment limsup E[py(7)~!] < oo is
bounded, then define the relative error

AW (1)

Then the bias logp(z) — Ly (z,p) = —Ellog(1 + A)].
Now, Taylor expand log(1 + A) about 0,

— 1 2 A 1
(2)

1.4 Al a?
:A—iA +/O (1+x> dx 3)

and in expectation
A 2
/ < ° > dx] )
0 1+

—Eflog(1 + A)] = %N —E

Our aim is to show

A 2
IE[/ Y dr
0o 1+=w

In particular, by Cauchy-Schwarz

€ O(g(N)'/?) (5)

N
E/ ( )dm (6)
A ) 12 A 1/2
<E — 4 7
< /o (1+x)2dx /0 x* dx @)
A 1/2 AD 1/27
—E||—| |= @®)
1+ A 5
1 1/2 Aﬁ 1/27
=E||l—— — 9
1+ A 5

and again by Cauchy-Schwarz

) R

and we’re done.

4.2. Gradients of L{V° (1., P, q)

We formulate unbiased gradients of LV (z1.n,p,q) by
considering Algorithm 1 as a method for simulating a

FIVO. We consider the cases when the sampling of z}
is and is not reparameterized. We also consider the case
where we make adaptive resampling decisions.

First, we assume that the decision to resample is not adap-
tive (i.e., depends on some way on the random variables
already produced until that point in Algorithm 1), and are
fixed ahead of time. When the sampling z{ is not repa-
rameterized there are three terms to the gradient: (1) the
gradients of log p(z1.,) with respect to the parameters
conditional on the latent states, (2) gradients of the densi-
ties g with respect to their parameters, and (3) gradients
of the resampling probabilities with respect to the parame-
ters. All together, the following is an unbiased gradient of
FIVO,

n N
Vo, log DN (T1:m) + Zkzl Zi:l
ﬁN(-rlzn) i i
log —— "V, lo 23| @1k 210
( gpN<331:k71) 108 Ghp (hlE sk, Hia)

(xlzn)

+ I(resampling at step k) log pANi)VM) log w,i)
PN (Z1:

(1:k
(11)

where [(A) is an indicator function. If 2} is reparameter-
ized, then the first and third terms suffice for an unbiased
gradient,

V9,¢ logﬁN(xlzn) + Zk:l

N
(]I(resampling at step k) Z

i=1

ﬁN(xl:n) ;
log =———<Vy 4 1o wz)
gPN(ILk) 6.4 708 W

(12)

In this work we only considered reparameterized gxs, and
we dropped the terms of the gradient that arise from resam-

pling.

Second, when the decision to resample is adaptive, the
domain of the random variables involved in simulating
log pn(z1.,) can be partitioned into 2" regions, over
each of which the density is differentiable. Between
those regions, the density experiences a jump discontinu-
ity. Thus, there are additional terms to the gradient of
LV (21, p, q) that correspond to the change in the re-
gions of continuity as the parameters change. These terms
can be written as surface integrals over the boundaries of
the regions. We drop these terms in practice.

4.3. Implementation details
4.3.1. VRNN MODEL

The VRNN is a sequential latent variable model that com-
bines a deterministic recurrent neural network (RNN) with
stochastic latent states zj, at each step. The observation dis-
tribution x, is conditioned directly on z; and indirectly on
z1:.k—1 via the RNN’s state hy(zx—1,2Tk—1,hk—1). For a
length n sequence the model’s posterior factorizes into the
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KL Divergence

0 10 20 30 40 50 60
1k Gradient Updates

Log Gradient Variance

—— With Resampling
—— Without Resampling

0 5 10 15 20 25 30 35
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Figure 3: (Left) The KL divergence between p(z1.,) and ¢(z1.,|%1.,) on the JSB chorales dataset with N = 16. (Right)
Variance of FIVO gradients with and without resampling terms along the trajectory generated by a training run trained
without resampling terms. The variance of the gradients with resampling terms is several orders of magnitude larger than
the gradients without resampling terms, making it difficult to train with the resampling terms. These curves are generated

from training on the JSB chorales.

conditionals
p1(z1)qi(x1]21) (13)
11 (pk(zklhk(zkflamkfh hi-1)) (14)
k=2
9k($k|zk,hk(2k71,$k71,hkﬂ)))- (15)

Similarly the variational posterior factorizes as

n

qi(z1lz) [ ar(enlbe(zoor, 2hor, hier),zi). - (16)
k=2

The latent variables at each step are factorized Gaussians,
and the observation distributions depend on the dataset
(Bernoulli for binary data and Gaussian for continuous
data). The RNN is a single-layer LSTM and the condition-
als are parameterized by fully connected neural networks
with one hidden layer of the same size as the LSTM hid-
den layer. We used the residual parameterization (Fraccaro
et al., 2016) for the variational posterior.

We initialized weights using the Xavier initialization (Glo-
rot & Bengio, 2010) and used the Adam optimizer (Kingma
& Ba, 2015) with a batch size of 4. We performed a
grid search over learning rates {3 x 107%,1 x 107%,3 x
1075,1 x 10~°} and picked the run and early stopping
step by the validation performance. During training, we
did not truncate sequences and performed full backpropa-
gation through time.

To reduce the variance from the gradient terms arising from
the resampling events, we used a linear baseline in the num-
ber of remaining timesteps. Still, we found that the unbi-
ased FIVO gradients had high variance. This variance is al-

most entirely due to the gradients corresponding to resam-
pling events, accounting for 6 orders of magnitude (Ap-
pendix Figure 3). Thus, we report results using only the
first term of Eq. (11) to compute gradient estimates.

4.3.2. POLYPHONIC MUSIC

We evaluated VRNNSs trained with the ELBO, IWAE, and
FIVO bounds on 4 polyphonic music datasets: the Notting-
ham folk tunes, the JSB chorales, the MuseData library of
classical piano and orchestral music, and the piano-midi.de
MIDI archive (Boulanger-Lewandowski et al., 2012). Each
dataset is split into standard train, valid, and test sets and
is represented as a sequence of 88-dimensional vectors de-
noting the notes active at the current timestep. We mean-
centered the input data, and we modeled the output as a set
of 88 factorized Bernoulli variables. We initialized the out-
put biases of the VRNN to the training set statistics. For the
results reported in Table 1, the Nottingham model used 64
units, the JSB Chorales model used 32 units, the MuseData
model used 256 units, and the piano-midi.de model used
64 units. We report bounds on average log likelihood per
timestep.

4.3.3. TIMIT

The TIMIT dataset is a standard benchmark for sequential
models that contains 6300 utterances with an average dura-
tion of 3.1 seconds spoken by 630 different speakers. The
6300 utterances are divided into a training set of size 4620
and a test set of size 1680. We further divide the train-
ing set into a validation set of size 231 and a training set
of size 4389, with the splits exactly as in (Fraccaro et al.,
2016). Each TIMIT utterance is represented as a sequence
of real-valued amplitudes which we split into a sequence of
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Nottingham  JSB Chorales MuseData Piano-MIDI.de

N Bound Train Test Train Test Train Test Train Test

ELBO -3.03 -323 -538 -861 -542 -7.12 -7.06 -1.79
4 IWAE -3.02 -321 -523 -859 -522 -717 -7.18 -7.81
FIVO -225 -286 -422 -695 -516 -6.55 -6.32 -1.72

ELBO -3.04 -3.60 -6.10 -8.60 -593 -7.11 -7.33 -7.83
8§ IWAE -3.15 -330 -6.18 -753 -571 -7.10 -6.71 -7.81
FIVO -198 -2.62 -510 -6.69 -547 -6.36 -6.22 -7.49

ELBO -339 -354 -6.10 -8.60 -6.18 -7.17 -7.23 -7.83
16 IWAE -2.18 -295 -4.60 -7.55 -574 -7.08 -7.04 -7.81
FIVO  -212 -2.58 -442 -6.60 -558 -6.09 -6.44 -7.19

Table 2: Performance of the VRNN on the polyphonic mu-
sic datasets trained with different bounds and numbers of
particles.

TIMIT

64 units 512 units

N Bound  Train Test Train Test

ELBO 36,095 35908 35,765 36,981
4 IWAE 35519 35984 36,833 34,067
FIVO 39,636 40,211 40,940 41,834

ELBO 35,617 35,612 38,467 37,902
8§ IWAE 35,822 36,835 37,161 38,074
FIVO 40,019 40,912 40,963 41,666

Table 3: Performance of the VRNN on the TIMIT dataset
trained with different bounds and numbers of particles.

200-dimensional frames, as in (Chung et al., 2015), (Frac-
caro et al., 2016). Data preprocessing was limited to mean
centering and variance normalization as in (Fraccaro et al.,
2016). For TIMIT, the output distribution was a factorized
Gaussian, and we report the average log likelihood bound
per sequence.



