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1. Introduction
With the introduction of the Electronic Health Records, a
growing amount of available digital information is expected
to encourage more personal and precise healthcare services,
and thus improve patients experience in clinics (Tresp et al.,
2016; Rahman & Reddy, 2015). On the other hand, the
physicians are also supposed to consult a large variety and
volume of data in order to perform diagnosis and treatment
decisions. Such data may include the patients’ background
information, medical images, genetic profiles and the their
entire medical history. The decision making process, there-
fore, could become increasingly complex in connection with
the growing amounts of information collected on each pa-
tient. Machine learning based Clinical Decision Support
could provide a solution to such data challenges (Choi et al.,
2015; Esteban et al., 2016). These works have shown that
machine learning models are able to profit from the large
amount of data in high dimensional space applying, e.g.,
various deep neural network architectures. The major ad-
vantage of these models lie in their capability of consuming
patient features in a variety of forms, and construct more
compact and informative latent representations.

However, these models tend to oversimplify the clinical
decision process by merely predicting the probability of
each decision using plain logistic regression as output layer,
thus assuming all possible classes to be unclustered and flat.
On the contrary, a clinical decision process is in reality often
clustered and hierarchical. For instance, given a patient with
breast cancer, a physician has to firstly choose one out of
multiple therapy clusters, such as radiotherapy, systemic
therapy and surgery. Only then is the physician supposed
to further specify the chosen therapy plan. In case of, e.g.,
radiotherapy, it could be either a curative or a palliative one
with respect to therapy intention; and either a Brachytherapy
or a percutaneous regarding the therapy type.

Following the concept of Encoder-Decoder Framework
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(Sutskever et al., 2014), we propose to first encode the
patients’ features into a latent representation vector using
Multilayer Perceptron (MLP) and Recurrent Neural Net-
works (RNN); and then, more importantly, deploy on top of
it a hierarchical classification model, which functions as a
decoder that predicts the clustered and hierarchical decision
process (Yang et al., 2017). It can be seen as a generic
form of the so-called Hierarchical Response model in (Tutz,
2011). (Morin & Bengio, 2005) introduced a technically
similar architecture to factorize a large softmax layer into a
hierarchy. The purpose was to accelerate the calculation of
the softmax, which in natural language processing often has
the size of the entire vocabulary.

We conduct experiments on a large and up-to-date dataset
consisting of almost three thousand metastatic breast can-
cer patients in Germany. In addition to the advantage of
being more realistic, we also show empirically that our pro-
posed architecture improves the prediction quality in term
of multiple evaluation metrics.

2. Metastatic Breast Cancer Data
The dataset was provided by the PRAEGNANT study net-
work (Fasching et al., 2015), which has been recruiting
patients of metastatic breast cancer since 2014. The origi-
nal data are warehoused in the secuTrial R© database. After
exporting and pre-processing, we could extract information
on 2,869 valid patients.

There are two classes of patient information that are poten-
tially relevant for modeling the therapy decisions: First the
static information includes 1) basic patient properties, 2)
information on the primary tumor and 3) information on
the history of metastasis before entering the study. After
dummy-coding we could extract for each patient i a static
feature vector denoted withmi ∈ R118.

The sequential information includes data on 4) local recur-
rences, 5) metastasis and 6) clinical visits. These are time-
stamped clinical events observed on each patient through-
out time, and at each time step there can be more than
one type of events recorded. All these sequential features
are of binary or categorical nature and are also dummy-
coded, yielding for patient i at time step t a feature vector
x
[t]
i ∈ {0, 1}189. We denote the whole sequence of events
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for this patient i up to time Ti using a set of {x[t]
i }Ti

t=1.

We attempt to model the therapy decisions concerning 7)
radiotherapies, 8) systemic therapies and 9) surgeries, based
on the input features as well as former therapy prescriptions.

We extract from the medical history of each patient all possi-
ble sub-sequences where the last event consists of one of the
three therapies. Therefore in each of these sub-sequences,
the last event serves as the target, which the model is trained
to predict based on all previous events and the static infor-
mation.

From the 2,869 patients we could extract in total 16,314
sequences (i.e. 5.7 sequence per patient on average). The
length of the sequence before a therapy prescription varies
from 0 to 35 and is on average 4.1.

Every time a physician is supposed to prescribe a treatment,
he or she is first supposed to choose one of the three ther-
apy clusters of radiotherapy, systemic therapy and surgery.
For each chosen therapy cluster the physician will then
decide the therapy features. For radiotherapy there are
two 3-dimensional multinomial distributed features: the
radiotherapy intention being either curative, palliative or
unknown; and the radiotherapy’s type being either percuta-
neous, Brachytherapy or others. For systemic therapy there
are three multinomial distributed features. The first one
describes 6 types of systemic therapy such as antihormone
therapy, chemotherapy, anti-HER2 therapy etc.; the second
feature documents the therapy’s intention, namely an argu-
ment based on the 13 different stagings of the cancer; the
third four-dimensional feature records whether the therapy
prescription is related to a surgery or is unknown. The last
cluster is composed of 10 Bernoulli distributed variables that
describe the surgery, such as breast conservation surgery,
mastectomy, etc..

3. A Predictive Model of Therapy Decisions
With an encoder RNN we could extract from such sequential
input a compact and fixed-size vector representing the entire
history of the patient up to a specific time step. For the
sake of simplicity, we denote such an RNN –either GRU
or LSTM– using a function: h[t∗]

i = ω({x[t]
i }t∗t=1), where

h
[t∗]
i is the last hidden state.

In order to also take into account the static features, we
concatenate the output of the RNN with the latent represen-
tation learned from the static features: z[t

∗]
i = (h

[t∗]
i , qi)

with qi = σ(HTmi). Therefore, the vector z[t
∗]

i is ex-
pected to represent all available information on patient i up
to time t∗ in a latent space.

We attempt to model the therapy decisions in a similar fash-
ion as the physicians’ prediction procedure: clustered and

hierarchical. A physician first has to choose one therapy
cluster, and then to specify for the chosen cluster its features.
We propose a Multinomial Hierarchical Regression (MHR)
to model this procedure.

In the first step we model the probability that each of the
three therapy clusters is chosen at time step t∗ for patient i
using a multinomial variableC [t∗]

i with a softmax activation:

P(C [t∗]
i = k |mi, {x[t]

i }t
∗

t=1)

=Softmax
(
(z

[t∗]
i )Tγk

)
.

(1)

Here z[t
∗]

i is the latent representation for the patient up to
this time step and γk serves as the cluster-specific parameter
vector.

Then in the second step, given a specific therapy cluster k,
we denote the number of therapy features in this cluster with
Lk and model the lk-th multinomial distributed feature vari-
able Fk,lk , whose conditional probability can be modeled
with

P(F [t∗]

i,k,lk
= r | C [t∗]

i = k,mi, {x[t]
i }t

∗

t=1) =

=Softmax
(
(z

[t∗]
i )Tβk,lk,r

)
,

(2)

if k=1 or k=2, i.e. in case of radiotherapy or systemic
therapy where therapy features in each cluster are multiple
multinomial distributed. Therefore one would need the
Softmax function to model the probabilities that the therapy
feature takes one specific value r. We denote the parameter
vector βk,lk,r with three levels of subscripts: k suggests the
cluster of the therapy, lk selects one specific multinomial
feature from this cluster, and r denotes the r-th possible
outcome of this feature.

If the therapy cluster suggests the surgery, i.e. k=3, whose
features consist of Lk=10 Bernoulli variable, we would have
instead of Eq. (2) the following formulation:

P(F [t∗]

i,k,lk
= r | C [t∗]

i = k,mi, {x[t]
i }t

∗

t=1)

=σ
(
(z

[t∗]
i )Tβk,lk,r

)
,

(3)

with r = 1 in all cases, because a Bernoulli variable has an
one-dimensional outcome.

The product of Eq. (1) and (2) as well as that of Eq. (1) and
(3) yields the joint probability of both therapy feature and
cluster as

P(F [t∗]

i,k,lk
= r ∧ C [t∗]

i = k |mi, {x[t]
i }t

∗

t=1). (4)

But due to the fact that

P(F [t∗]

i,k,lk
= r ∧ C [t∗]

i 6= k |mi, {x[t]
i }t

∗

t=1) = 0, (5)
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Figure 1. A simplified illustration of deriving the marginal prob-
ability of the therapy feature. z is the latent representation of a
patient.
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• 

in all cases, this joint probability of Eq. (4) is equal to

P(F [t∗]

i,k,lk
= r|mi, {x[t]

i }t
∗

t=1), (6)

applying the law of total probability, yielding the marginal
prediction and allowing us to perform the optimization
against the target vector. A simplified illustration of this
calculation can be found in Fig. 1.
The major difference between our model and the one in
(Tutz, 2011) lies in the fact that the latter one only defines
one multinomial response on the second level, which is
linked with each cluster on the first level. Our model is
more generic in that it allows multiple multinomial or binary
responses to be linked to each cluster.

Finally we illustrate the complete model architecture in
Fig. 2. There the RNN encoder outputs its last hidden
state that represents the whole sequence and is concatenated
with the latent representation mapped from the static patient
information. This concatenated vector forms the input to
the hierarchical model, which in the first step calculates
the therapy cluster probabilities and in the second step the
therapy feature probabilities conditioned on corresponding
cluster. These two levels of probabilities are multiplied,
giving the joint probabilities of cluster and feature, which
are equivalent to marginal feature probabilities as proven in
Eq. (5).

4. Experiment
We conduct cross-validation by splitting the 2,869 patients
into 5 disjoint sets, and then query their corresponding se-
quences to form the training and test sets.

We present two classes of evaluation metrics. First, column-
wise average Area Under ROC (AUROC) and Area Under
Precision-Recall-Curve (AUPRC), which are well-known
metrics applied to measure the classification quality, should
indicate the models’ capability to assign patients to the
correct therapy features. Secondly, we report multi-label
ranking-based metrics of Coverage Error (CE) (Tsoumakas

Table 1. Results of experiments with two weak baselines: Random
Prediction and Constant Most Popular Prediction.

Weak Baselines AUROC AUPRC CE LRAP
Random 49.7% 9.4% 38.2 11.2%

Most Popular 50.0% 21.3% 13.9 38.6%

et al., 2009) and Label Ranking Average Precision (LRAP)
(Madjarov et al., 2012). In contrast to precision and recall
based metrics, they are calculated row-wise and thus evalu-
ate for each patient how many recommended therapies were
actually prescribed. LRAP ranges between 0 and 1 just as
AUROC and AUPRC. CE describes how many steps one
has to go in a ranked list of recommendations till one covers
all ground truth labels. In our case, the average number
of labels in each patient case is 4.4 and the total number
of possible labels is 39. The CE shall therefore be ideally
4.4, suggesting a perfect prediction, and be 39 in worst case
scenario (Tab. 1).

In Tab. 2 we show experiments with three encoders and two
decoders. The baseline encoder is a simple Feed-Forward
Layer (FFL) consuming the raw sequential information that
is aggregated with respect to time. Then the aggregated
feature vector is concatenated with the static feature vector
for each patient case. Such aggregation can be interpreted
as a hand-engineered feature processing, where each fea-
ture represents the total number of observed feature values.
It also corresponds to the bag-of-words approach (Harris,
1954) in Natural Language modeling, this approach com-
pletely neglects the order in which the feature values are
observed. As a more advanced solution we apply GRU and
LSTM as RNN encoders, which are expected to capture the
information regarding the events order as well.

The baseline decoder is a single-layered logistic regression,
which is a popular choice in multi-class multi-label classi-
fication tasks in machine learning. For instance, a therapy
feature variable is multinomially distributed, implying the
mutual exclusiveness of the probable outcomes of the fea-
ture values and this aspect cannot be taken into account
with a flat logistic regression. For instance, a physician is
only supposed to prescribe one medication from a class of
medications of similar function.

Table 2. Average Results of Experiments with Different Encoders
and Decoders, with qi ∈ R128 and h

[t∗]
i ∈ R256

Enc. Dec. AUROC AUPRC CE LRAP

FFL Logistic 69.4% 13.4% 12.61 48.6%
MHR 70.3% 13.9% 11.79 49.3%

GRU Logistic 81.8% 28.8% 8.57 61.3%
MHR 82.1% 31.2% 8.26 62.3%

LSTM Logistic 79.6% 24.7% 9.47 57.9%
MHR 81.9% 30.2% 8.53 61.4%



Modeling Clinical Decisions with Multinomial Hierarchical Classification

Figure 2. Our proposed model architecture. The radiotherapy features consist of two 3D multinomial variables (red-colored). The systemic
therapies consist of on 4D, one 16D and one 3D multinomial variables (orange-colored). The surgery feature consists of 10 Bernoulli
variables (purple-colored).
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Both decoders on top of the baseline FFL encoder show
suboptimal results compared with those on top of RNN
encoders, i.e., GRU and LSTM encoders significantly im-
proves the prediction quality even with a mere logistic re-
gression as decoder. In comparison with the baseline logistic
regression as last layer, the MHR model is shown to further
improve the prediction in term of all evaluation metrics.
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