
Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

Rose Yu 1 * Stephan Zheng 2 * Yan Liu 1

Abstract
We present Tensor-RNN, a novel RNN architec-
ture for multivariate forecasting in chaotic dy-
namical systems. Our proposed architecture cap-
tures highly nonlinear dynamic behavior by us-
ing high-order Markov states and transition func-
tions. Furthermore, we decompose the high-
dimensional structure of the model using tensor-
train networks to reduce the number of param-
eters while preserving the model performance.
We demonstrate significant learning speed im-
provements over state-of-the-art RNN architec-
tures in learning speed and predictive accuracy
on a range of simulation data of non-linear dy-
namical systems, as well on real-world climate
and traffic data. Moreover, we show that Tensor-
RNN shows improved long-term forecasting ro-
bustness over unstructured baselines.

1. Introduction
One of the central questions in science is forecasting: given
the past, what is the optimal future prediction? In many
domains with complex spatiotemporal structure and non-
linear dynamics, such as weather systems and transporta-
tion networks, forecasting poses a significant unsolved
structured prediction challenge. The key issue is how to
accurately capture the non-linear dynamics and higher-
order correlations of the data-generating process, which
can make systems highly sensitive to initial conditions
(Baker & Gollub, 1996). Examples abound in science and
engineering, from neural activity, turbulence, climate to
traffic systems. In chaotic systems, small perturbations in
state can grow exponentially in time, which limits the long-
term forecasting power of state-of-the-art approaches.

A classic example is the climate system: one can derive the

*Equal contribution 1University of Southern California, Los
Angeles, CA 90089 USA 2California Institute of Technology,
Pasadena CA 91125 USA. Correspondence to: Stephan Zheng
<stephan@caltech.edu>, Rose Yu <qiyu@usc.edu>.

Proceedings of the ICML 17 Workshop on Deep Structured Pre-
diction, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

system dynamics from physical principles (e.g. the Navier-
Stokes fluid dynamics). However, simulations are funda-
mentally limited by finite-precision machines and perfectly
measuring the initial conditions is impossible or requires
prohibitively large amounts of data.

Common approaches to forecasting involve using spectral
analysis, discrete time models, functional interpolation and
explicitly learning the system dynamics (system identifica-
tion) (Aguirre & Letellier, 2009). Other methods have used
hierarchical models that learn both short-term and long-
term behavior of the dynamics (Zheng et al., 2016) from
data. However, it is often infeasible to obtain good analyti-
cal dynamics models or stable predictions.

In this work we therefore take a data-driven approach to
stable long-term forecasting in dynamical systems. Our
problem can be stated as follows: given a dataset of raw se-
quential data that was generated by a nonlinear dynamical
system, how can we efficiently learn an RNN architecture
that can reliably forecast over a future horizon of T time-
steps? Here, we would like T to be as large as possible.

We propose and validate a novel recurrent neural network
architecture, called Tensor-RNN, that provides a black-box
model to perform forecasting and learns the system dynam-
ics automatically. Previous RNN models have achieved
state-of-the-art performance in sequence generation, ma-
chine translation and speech recognition (LeCun et al.,
2015). However, these models do not generalize well to
the domain of forecasting in chaotic systems.

The key features of Tensor-RNN are: (1) it considers a
longer history of previous hidden states; (2) it directly
models the high order state interactions with multiplica-
tive memory units; (3) it employs a tensor network method,
a structured low-rank tensor decomposition to reduce the
number of parameters in the model. This provides an effec-
tive approximation which largely preserves the correlation
structure of the full-rank model.

Our contributions can be summarized as follows:

• We describe a novel RNN architecture, Tensor-RNN,
that encodes higher-order non-Markovian dynamics
and present a tensor network decomposition that
makes learning tractable and fast.

Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

• We validate our model on 3 chaotic systems: the
Lorenz attractor, real-world climate and traffic data.

• We experimentally show that the proposed model can
forecast chaotic dynamics more accurately and faster
than common RNN models, both for short-term and
long-term forecast horizons.

Our work is related to classic work in time series fore-
casting, which has studied auto-regressive models, such as
the ARMA or ARIMA model (Box et al., 2015). These
model a process x(t) linearly, which does not capture non-
linear, chaotic systems. Using neural networks to capture
the chaotic dynamics has a long history (Aihara et al., 1990;
Jaeger & Haas, 2004) and have been applied to weather
forecasting, traffic prediction and other domains (Schmid-
huber, 2015). From a modeling perspective, (Giles et al.,
1989) considers a high-order RNN to simulate a determin-
istic finite state machine and recognize regular grammars.
(Sutskever et al., 2011) propose multiplicative RNN that
allow each hidden state to specify a different hidden-to-
hidden weight matrix. However, these models only use the
most recent state and are limited to additive memory units.

2. Tensor RNN
Our goal is to develop an efficient model for sequential
multivariate forecasting problems: given a sequence of d-
dimensional vectors (x(t))t>0, predict y(t) = x(t+1). An
RNN recursively computes y(t) from a hidden state h(t):

h(t) = f(x(t), h(t− 1); θ), y(t) = g(h(t)) (1)

where f is a non-linear activation function and θ denote the
layer parameters. An RNN therefore learns a model for the
Markov process (h(t))t>0, of order 1 (only the previous
time-step is considered). A common choice is to model the
recurrent layer as an activation function applied to a linear
combination of x(t) and h(t):

h(t) = f(Whxx(t) +Whhh(t− 1) + bh),

x(t+ 1) = f̃(W xhh(t) + bx) (2)

where f, f̃ are activation functions (e.g. sigmoid, tanh)
for the state transition function, Whx,W xh and Whh are
transition matrices and bh, bx are biases. Although exist-
ing RNNs are very expressive, in the majority of RNNs the
state h(t) is limited to only a linear combination of the pre-
vious state h(t− 1) and input x(t).

However, many systems evolve under complex continuous-
time dynamics that are given by nonlinear equations:

g

(
x(0 : t),

dx

dt
(0 : t),

d2x

dt2
(0 : t), . . . ;φ

)
= 0, (3)

where g can be an arbitrary (smooth) function in the (his-
torical) states x(0 : t) and their derivatives. Due to non-
linearities in g, many systems exhibit chaotic behavior: two
initial states x1(0), x2(0) that are arbitrarily close can drift
exponentially far apart under evolution of g. Learning an
accurate discrete-time forecasting model y(t) thus implies
learning an optimal approximation to g.

2.1. Tensor-RNN

We propose a high-order model, called Tensor-RNN, that
is suited for learning nonlinear dynamical systems and can
be viewed as a higher-order generalization of RNNs. Our
model has two goals: explicitly modeling k-order Markov
processes with k steps of temporal memory and polynomial
interactions between the hidden states h(·) and x(t).

First, we consider longer “history”: we keep K order his-
toric states: h1, · · · , hK , making the Tensor-RNN high-
order Markov. In its most general form, the high-order
Markov design leads to the following architecture:

h(t) = f(x(t), h(t− 1), · · · , h(t−K)) (4)

where f is an activation function. In principle, previous
work has shown that with a large enough hidden state size,
such RNN structures are capable of approximating any
temporal function.

Second, to learn nonlinear dynamics g efficiently, we also
add higher-order interactionspasade to approximate the
state transition function. We can define the K-order hid-
den state as:

s(t− 1)T =
[
1 h(t− 1) . . . h(t−K)

]
The bias units 1 allow us to model all possible polynomial
interactions up to order D in a compact form. We can now
construct a higher-order transition tensor by modeling a de-
gree D polynomial interaction between the hidden states
using a D + 1 dimensional tensorW:

h(t+ 1)α =

f

 ∑
i1,··· ,iD

Wαi1···iD si1(t)⊗ · · · ⊗ siD︸ ︷︷ ︸
D

(t)

 (5)

where the indices i· index the memory states and D is the
degree of the polynomial.

2.2. Tensor Network Method

Unfortunately, the number of parameters in W grows ex-
ponentially as O(KD), which makes the general K − D-
order model prohibitively large to train. To overcome this
difficulty, we approximate W with tensor networks. Such
networks encode a structural decomposition of tensors into

Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

	𝒜# 	𝒜$ 	𝒜%
…

	𝒲
…	𝑖#

	𝛼)

	𝑖%

	𝑖# 	𝑖$ 	𝑖%

	𝛼) 	𝛼# 	𝛼#

	𝛼%

	𝛼%

(a) Tensor-train decomposition: nodes repre-
sent tensor variables and straight edges repre-
sent indices. Arcs represent tensor contractions. (b) Lorenz Attractor (c) Traffic: 2 sensors

Figure 1. (a) Tensor-train decomposition (left). 2 examples of chaotic systems: (b) Lorenz attractor (middle) and (c) traffic data (right).

low-dimensional components and have been shown to pro-
vide the most general approximation to smooth tensors
(Orús, 2014). The most commonly used tensor networks
are linear tensor networks (LTN), also known as tensor-
trains in numerical analysis or matrix-product states in
quantum physics (Oseledets, 2011).

A tensor train model decomposes a D-dimensional tensor
W into a network of sparsely connected low-dimensional
tensors {Ad ∈ Rrd−1×nd×rd} as:

Wα0i1···iDαD
=

∑
α1···αD−1

A1
α0i1α1

A2
α1i2α2

· · · ADαD−1iDαD

as depicted in Figure (1a). When r0 = rD+1 = 1 the
{rd} is called the tensor train rank. With tensor networks,
we can reduce the number of parameters from (HK +1)D

to (HK + 1)R2D, with H as the hidden layer size and
R = maxd rd as the upper bound on the tensor network
rank. Thus, a major benefit of LTNs is that they do not
suffer from the curse of dimensionality. This is in sharp
contrast with many classical tensor decompositions, such
as the Tucker decomposition (O(rankD)).

3. Experiments
We validated the accuracy, efficiency and robustness of
Tensor-RNNs on 1 synthetic and 2 real-world datasets.

Lorenz Attractor. The Lorenz system describes a two-
dimensional flow of fluids (see Figure 1b):

dx

dt
= σ(y − x) dy

dt
= x(ρ− z)− y dz

dt
= xy − βz

This system has chaotic solutions (for certain parameter
values) that revolve around the so-called Lorenz attractor.
We simulated 100, 000 time-steps using σ = 10 ρ = 28,
β = 2.667, with 10 random initial points (seeds).

USHCN-CA. The U.S. Historical Climatology Network
(USHCN) daily (http://cdiac.ornl.gov/ftp/
ushcn_daily/) contains daily measurements for 5 cli-
mate variables for more than 100 years. The five climate

variables correspond to maximal daily temperature, min-
imal daily temperature, precipitation, snow fall and snow
depth. The records were collected across more than 1 200
locations and span over 45 384 time stamps.

LA Highway Traffic. We also used traffic data collected
from the highways and arterial streets of Los Angeles
County (covering 5400 miles cumulatively) from May 19,
2012 to June 30, 2012. Due to many missing values in the
raw data, we filtered out sensors with more than 20% miss-
ing values (see Figure 1c). In total, after processing, the
dataset covers 36 000 time-steps.

Experimental Setup. To justify that Tensor-RNN effec-
tively learns chaotic dynamics, we evaluated it on:

• Short-term forecasting: ∀t: given xt, predict xt+1.

• Long-term forecasting: given a burn-in sequence
x0, . . . , xt0 , predict xt0+1, . . . , xt+n. For each t, the
model uses as input its previous prediction x̂t.

Our experiments use t0 = 5, n = 20. During training, we
randomly select subsequences and do back-propagation-
through-time over 20 time-steps. During testing, for long-
term forecasting, we move through the test-set in order, and
reset hidden states for each prediction window.

Baselines. We compared Tensor-RNN against 3 base-
line recurrent neural network models: RNN, LSTM and
Higher-order RNNs (HORNN) (Soltani & Jiang, 2016).

Training. We trained all models using gradient descent on
the length-T sequence regression loss

L(y, ŷ) =

T∑
t=1

||ŷt − yt||22, (6)

where yt, ŷt are the ground truth and model predic-
tion respectively. We trained all models using the
ADAM optimizer and performed a hyper-parameter search
over the learning-rate (10−1 . . . 10−5), hidden state size
(32, 64, 128, 256) and tensor-train rank (1 . . . 128). For

http://cdiac.ornl.gov/ftp/ushcn_daily/
http://cdiac.ornl.gov/ftp/ushcn_daily/

Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

Figure 2. Short-term (left 2) and long-term (right 2) predictions for LSTM (left, blue) and Tensor-RNN (right, blue) versus the ground
truth (red). In short-term forecasting, Tensor-RNN is closer than the LSTM to the true dynamics. In long-term forecasting, Tensor-RNN
shows more consistent, but imperfect, predictions, whereas the LSTM is highly unstable and gives noisy predictions.

Dataset Lorenz Climate Traffic

RNN 0.145 0.258 0.113
LSTM 0.029 0.220 0.086
HORNN 0.100 0.239 0.090
TRNN 0.009 0.177 0.089

Table 1. Short-term forecasting test-set accuracy (RMSE)

Dataset Lorenz Climate Traffic

RNN 0.161 0.281 0.187
LSTM 0.228 0.301 0.141
HORNN 0.159 0.353 0.224
TRNN 0.083 0.230 0.139

Table 2. Long-term forecasting (n = 20) test accuracy (RMSE)

all datasets, we used a 80%-10%-10% train-validation-test
split.

Results: short-term forecasting. Table 1 reports short-
term forecasting accuracy. The Tensor-RNN achieves sig-
nificant improvements over baselines for the Lorenz and
climate data, while it is competitive for traffic data. The
latter result might be due to the high number of missing
values, which might limit the performance for all models.

Results: long-term forecasting. We now investigate how
robust Tensor-RNNs are to error propagation in long-term
forecasting in chaotic systems. We report the prediction er-
ror (in RMSE) on the test-set for long-term forecasting with
5 burn-in steps and a large (n = 20 steps) rollout, as shown
in table 2. Our main result is that Tensor-RNN notably
outperforms all baselines on all datasets in this setting, in-
cluding the matrix HORNN model. In particular, we note
that RNNs sometimes outperform LSTMs and HORNNs
on long-term forecasting. This indicates that more com-
plicated models are not automatically more robust to error
propagation in chaotic systems.

Speed-up Performance Trade-off. We now investigate
potential trade-offs between accuracy and computation.

Figure 3. Training speed performance as the log-loss (log-RMSE)
versus training step for the models with the best long-term
forecasting accuracy from Table 2. The hidden state is 256-
dimensional (TRNN) and 32-dimensional (others). We observe
that TRNN converges faster than baselines.

Figure 3 displays the training loss with respect to the num-
ber of steps, for the best performing mdoels on long-term
forecasting. We see that Tensor-RNN converges signifi-
cantly faster than other models, both in terms of number
of training steps and achieved training-loss. This suggests
that Tensor-RNN has a more efficient representation of the
nonlinear dynamics, and can learn much faster as a result.

Model Inspection. To get intuition for the learned mod-
els, we visualize the best performing TRNN and LSTM in
Figure 2. In short-term forecasting, we see that the TRNN
corresponds much better with ground truth. In long-term
forecasting, TRNN is more stable, whereas the LSTM pro-
duces highly noisy predictions. However, TRNN does not
follow the ground truth perfectly and still produces deviat-
ing tracks, showing there is still room for improvements.

References
Aguirre, Luis A and Letellier, Christophe. Modeling nonlinear

dynamics and chaos: a review. Mathematical Problems in En-
gineering, 2009, 2009.

Aihara, Kazuyuki, Takabe, T, and Toyoda, M. Chaotic neural
networks. Physics letters A, 144(6-7):333–340, 1990.

Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

Baker, Gregory L and Gollub, Jerry P. Chaotic dynamics: an
introduction. Cambridge University Press, 1996.

Box, George EP, Jenkins, Gwilym M, Reinsel, Gregory C, and
Ljung, Greta M. Time series analysis: forecasting and control.
John Wiley & Sons, 2015.

Giles, C Lee, Sun, Guo-Zheng, Chen, Hsing-Hen, Lee, Yee-Chun,
and Chen, Dong. Higher order recurrent networks and gram-
matical inference. In NIPS, pp. 380–387, 1989.

Jaeger, Herbert and Haas, Harald. Harnessing nonlinearity: Pre-
dicting chaotic systems and saving energy in wireless commu-
nication. science, 304(5667):78–80, 2004.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep learn-
ing. Nature, 521(7553):436–444, 2015.

Orús, Román. A practical introduction to tensor networks: Matrix
product states and projected entangled pair states. Annals of
Physics, 349:117–158, 2014.

Oseledets, Ivan V. Tensor-train decomposition. SIAM Journal on
Scientific Computing, 33(5):2295–2317, 2011.

Schmidhuber, Jürgen. Deep learning in neural networks: An
overview. Neural networks, 61:85–117, 2015.

Soltani, Rohollah and Jiang, Hui. Higher order recurrent neural
networks. arXiv preprint arXiv:1605.00064, 2016.

Sutskever, Ilya, Martens, James, and Hinton, Geoffrey E. Gener-
ating text with recurrent neural networks. In Proceedings of the
28th International Conference on Machine Learning (ICML-
11), pp. 1017–1024, 2011.

Zheng, Stephan, Yue, Yisong, and Hobbs, Jennifer. Generating
long-term trajectories using deep hierarchical networks. In Ad-
vances in Neural Information Processing Systems, pp. 1543–
1551, 2016.

