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Abstract
Very deep convolutional neural networks (CNNs)
yield state of the art results on a wide variety
of visual recognition problems. Recent evidence
also indicates that convolutional networks could
benefit from an interface to recurrent neural net-
works (RNNs) with explicitly constructed mem-
ory mechanisms, which would help address the
challenges of structured prediction by allowing
for a form of iterative inference. We propose
and evaluate a memory mechanism enhanced
convolutional neural network architecture based
on augmenting residual networks (ResNets) with
a non-convolutional long short term memory
mechanism. Our experiments yield results com-
parable to state-of-the-art results on a structured
prediction task (specifically, face keypoint de-
tection), but with much fewer parameters and a
significantly lower computational cost. Interest-
ingly, we achieve this with an extremely general-
purpose architecture which also yields results
among the top performing methods in an entirely
different domain- classification- on the CIFAR-
100 and CIFAR-10 datasets.

1. Introduction
Deep convolutional neural networks have recently ex-
ceeded human level performance on a number of tasks. As
an example, residual networks (ResNets) have taken the top
spot on the standard ImageNet evaluation, exceeding hu-
man performance in terms of the key top-5 error rate (He
et al., 2015). Well known designs for deep convolutional
neural network architectures such as ResNets and VGG ar-
chitectures (Simonyan & Zisserman, 2014) currently do not
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have explicitly designed recurrent computation or memory
mechanisms. However, as deep learning techniques are
being applied to more and more complex visual recogni-
tion problems, the ability of CNNs to interface with recur-
rent processing elements and to manipulate memory con-
tents outside of the traditional CNN processing pipeline be-
comes a seductive property. Our contribution is to propose
and explore a novel CNN architecture with an interface to
non-convolutional recurrent processing and memory ma-
nipulation elements. Here, instead of using a deep LSTM
network as a mechanism that processes elements in a time
series or in a specific pattern or sequence, we use its inputs
as the abstract feature representations of a very deep CNN.
In this way the LSTM mediates an interface between the
recurrent processing elements, internal memory and the al-
gorithmic state of an LSTM RNN with the features created
by the layers of a CNN.

When used for structured predictions, each input step con-
sists of features representing higher levels of abstraction
in the CNN feature hierarchy, while each step of the RNN
may serve as an iterative inference regarding the underlying
structured prediction problem. This formulation thus not
only affords such models the capacity to perform memory
manipulation, but also provides alternative general purpose
algorithmic processing operations that execute along side
classical convolutional network processing units.

As shown in the results section, we find that this architec-
ture affords a significant reduction in the number of pa-
rameters and the computational cost over the state-of-the-
art method (Recombinator Networks (Honari et al., 2016)),
while increasing the loss on the 300W dataset (Sagonas
et al., 2013) only marginally. We also find that the CRMN
performs better than various ResNet baselines, even those
with a significantly larger number of parameters and float-
ing point operations. Remarkably, and for the first time
to the best of the authors’ knowledge, this architecture is
extremely general, and also provides results comparable
to the best performing results at the time of writing in an
entirely different domain – image classification – on the
CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinton,
2009). An earlier version of this work may be found at
(Moniz & Pal, 2016).
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2. Related Work
As deep networks optimized with gradient descent must
deal with the issue of vanishing or exploding gradients, var-
ious architectures and mechanisms have been proposed to
address the underlying issue. Deep residual networks have
recently emerged as an extremely popular architecture that
mitigates the valishing/exploding gradient issue even for
extremely deep netowrks, and are among the top perform-
ing architectures on the ImageNet, CIFAR-10 and CIFAR-
100 benchmarks. Here, the residual connections composed
of skip connections that are combined additively with the
output of convolutional blocks of are used.

Recurrent neural networks (RNNs) also suffer from simi-
lar issues with vanishing and exploding gradients. LSTM
RNNs were explicitly designed to deal with the issue
through the manipulation of a memory cell having the prop-
erty that gradient information can be captured and stored
without degradation over many timesteps – or in our case,
many network layers.

While recurrent convolutional networks (RCNs) have been
used for video processing, typically feeding information
from 2D CNNs into an RNN which creates the represen-
tation for the video, a recently proposed method for video
processing (Ballas et al., 2015) has integrated CNNs with
gated recurrent units or GRUs (Chung et al., 2014) both
temporally and along the feature map hierarchy to form a
stacked GRU-RCN. While this network is potentially very
deep in terms of the temporal dimension, at 5 layers, it is
shallow in terms of per frame abstraction depth. The pos-
itive impact of having a GRU recurrent network along the
abstraction depth of a VGG grade CNN points to potential
advantages of using more sophisticated RNN mechanisms
along the feature abstraction hierarchy of extremely deep
CNN architectures.

The Highway Network (Srivastava et al., 2015) architec-
ture consists of a mechanism allowing 2D-CNNs to interact
with a simple memory mechanism. In the case of a convo-
lutional highway network, input layers are transformed us-
ing convolutional layers, the elements of which are either
passed or blocked using a gating mechanism controlled by
Transform and Carry Gates, which themselves are learned
functions of the input. Highway Networks were found to
not suffer from increasing depth, and converge much bet-
ter than a regular deep CNN. This work further substanti-
ates the notion that explicit memory mechanisms interact-
ing with CNNs could be a potent combination.

Recombinator Networks (Honari et al., 2016) proposes
a 2D convolutional structure that aims to leverage both
coarse and fine grained features to accurately perform the
structured prediction of facial keypoints, along with a de-
noising network to ensure that the system’s predicted key-

points conform to the typical keypoint layout. The archi-
tecture proposed points strongly towards the possible ben-
efit of using a recurrent mechanism to help the network re-
member important coarse grained features (in the form of
the features in the initial layers of the network), and com-
bining these coarse-grained features with the fine-grained
features typically observed at the output end of a deep net-
work.

3. Convolutional Residual Memory Networks
The CRMN architecture (Figure 1) we propose drops an
LSTM on top of a standard convnet architecture (in this
case, a ResNet). Thus, the LSTM in our CRMN archi-
tecture takes views of the abstraction hierarchy as input,
instead of a time series, with features increasing in abstrac-
tion as the series progresses (as opposed to changing in
time). Before passing each feature map into the LSTM, we
apply a meanpool sub-sampling on the feature map (which
both cuts down the total number of parameters and train-
ing time, and also improves performance, likely due to the
easier optimization of the now much lighter LSTM) and
then flatten it. When the size of a flattened feature map is
less than the maximum size (after the first ResNet block,
when a convolution of stride 2 has been used), the features
are zero-padded. Both the final hidden state output of the
LSTM and the output of the global average pooling layer at
the end of the ResNet are fed into a fully connected layer.
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Figure 1. The repeating computational block and the final com-
putational units of a convolutional residual memory network
(CRMN).

More precisely, we begin with a ResNet computational
block following the formulation in (He et al., 2015). De-
fine xl as the set of all convolutional feature maps for layer
l and Wl as all parameters for the layer. We use the out-
put of a ResNet with 2-layer convolutional blocks denoted
by the residual mapping function f(xl, {Wl})) along with
the identity mapping as the input to each LSTM unit af-
ter the element-wise addition with the previous layer. This
implies the following formulation for our CRMN, where
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xl = xl−1 + f(xl−1, {Wl}), is the input at each LSTM
interface, step l. As discussed above, we reduce the size
of this input using mean pooling. Using Wx and bx to de-
note the various weight matrices and bias terms, the input,
forget and output gates for the LSTM are then given by

il = σiof (Wxixl +Whihl−1 +wci � ct−1 + bi),

fl = σiof (Wxfxl +Whfhl−1 +wcf � cl−1 + bf ),

ol = σiof (Wxoxl +Whohl−1 +wco � cl + bo),

where we use the logistic function as the nonlinearity for
the input, forget and output gates σiof . The peephole con-
nections are given by the terms of the form wx � ct. The
cell gates are given by

cl = fl � cl−1 + il � sl,
sl = σc(Wxcxl +Whchl−1 + bc),

where we use tanh as the cell gate non-linearity σc. The
final output for the hidden unit update is given by

hl = ol � σh(cl).

As discussed above and illustrated in figure 1, the final pre-
diction is made using global pooling of the final ResNet
layers and the output of the LSTM hidden state as input to
a sigmoid layer (if the model is used for keypoint predic-
tion) or a softmax prediction layer (if the model is used for
classification, shown in 1).

4. Experiments
In most of our experiments, we observed that architectures
trained for longer before a learning rate shift perform better
on the validation set in general, so we train for at least m
epochs, before the first learning rate shift, m being a hy-
perparameter. We make other learning rate changes a few
epochs after the loss on the validation set stops decreasing.
Since the architecture proposed in this paper can be divided
into 3 sub-components: the Residual Network, the LSTM,
and the fully connected layer, we explored a round robin
learning rate (RRLR) schedule when updating the learn-
ing rate of each component sequentially, starting with the
ResNet, then the LSTM, then the sigmoid layer.

4.1. Helen, LFPW and iBug Experiments

The additional LSTM mechanism in our formulation al-
lows for a qualitatively different form of algorithmic ma-
nipulation which we conjecture can be particularly useful if
the underlying task is more complicated than simple clas-
sification. When a structured prediction is desired, some
form of internal inference procedure that accounts for the
fact that a joint prediction must be made by the model is
a desirable property and this fact in part motivated our de-
sign explored here. A number of recent papers have high-
lighted the relationships between recurrent networks and

classical methods for structured prediction such as random
fields and conditional random fields (Zheng et al., 2015).
We therefore test the ability of an adapted CRMN to make
a structured prediction for the well known task of localiz-
ing facial keypoints. In contrast to RCNs, here we use an
LSTM which executes in parallel with the underlying CNN
and which makes continuous valued keypoint predictions,
i.e. performs multivariate non-linear regression.

We trained the model on the train sets of the AFW, Helen
and LFPW datasets, and evaluated the performance on the
test set (using a validation set to determine when to change
the learning rate). All our hyperparameters are exactly as
in (Honari et al., 2016), except that we use the round-robin
learning schedule described above instead of the Adam op-
timizer (Kingma & Ba, 2014) (though we use the same
starting learning rate)- we decrease the learning rate by a
factor of 0.1, 0.5 and 0.2 successively.

We show how our CRMN fares vis-a-vis other methods and
baselines in 1. To the best of our knowledge, the best per-
forming method on these datasets is the Recombinator Net-
work architecture. It is important to note that almost all
other method of structured prediction and classification are
fine-tuned specifically for the task, and would be difficult
to extend to other use-cases. Further, the underlying CNN
component of the models created here have not been de-
signed for the keypoint prediction task – which is known to
be important.

In brief, we find that this architecture reduces the num-
ber of parameters (by around 28%), and drastically reduces
the computational cost (by a factor of around 23x) of the
state-of-the-art method (Recombinator Networks (Honari
et al., 2016)), while increasing the loss on the 300W dataset
(Sagonas et al., 2013) only marginally (an increase of less
than 8% on the Helen+LFPW dataset, and less than 6% on
the iBug dataset). We also find that the CRMN performs
slightly better than even a baseline ResNet that has over
three times the number of parameters and takes over seven
times more floating point operations.

Model n fm Params FLOPs Common iBug

RCN - - 24.8M 327.84G 4.67 8.44
CRMN 5 4 17.76M 14.07G 5.04 8.92
ResNet 18 4 27.63M 50.59G 5.49 9.51
ResNet 9 8 54.55M 100.30G 5.14 8.94
ResNet 9 4 13.67M 25.09G 5.40 9.45
ResNet 5 4 7.46M 13.75G 5.91 10.23

Table 1. Mean test set error normalized by interocular distance

4.2. CIFAR-100 and CIFAR-10 Experiments

The architecture descried above has not been designed
specifically for the keypoint prediction task – which is
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known to be important – and yields extremely competitive
results in the classification scenario as well, with minimal
changes: we simply replaced the final sigmoid layer with a
softmax layer, changed the pooling from a 4x4 pooling to a
2x2 pooling because of the smaller image size, and changed
the learning rate schedule to one with learning rates [0.1,
0.01, 0.005, 0.001] (which is closer to the one proposed by
(He et al., 2015)).

We outline our results on the CIFAR-100 dataset, along
with the corresponding configurations we used (in terms
of depth and width), in Table 2. Our CIFAR-10 results are
presented in Table 3. In each table, we provide the other top
performing methods on the respective datasets for context.

Accuracy (%) and Method
67.61 Highway Network (100 layers) (Srivastava et al.,

2015)
75.42 Stochastic Depth (Huang et al., 2016b)
77.28 Swapout (32 layers; 64 fm) (Singh et al., 2016)
77.29 Pre-act. ResNet (He et al., 2016) (1001 layers)
79.96 WResNet + dropout (28 layers; 160 fm) (Zagoruyko

& Komodakis, 2016)
80.75 DenseNets (100 layers) (Huang et al., 2016a)
78.27 Our CRMN (32 layers; 64 fm)
79.68 Our CRMN (28 layers; 160 fm), RRLR
80.21 Our CRMN (32 layers; 192 fm), RRLR

Table 2. CIFAR-100 Accuracies.

Accuracy (%) and Method
90.62 Maxout Network (Goodfellow et al., 2013)
92.40 Highway Network (Srivastava et al., 2015)
93.57 ResNet (110 layers) (He et al., 2015)
94.77 Stochastic Depth (Huang et al., 2016b)
95.24 Swapout (32 layers; 64 fm) (Singh et al., 2016)
95.38 Pre-act. ResNet (He et al., 2016) (1001 layers)
95.50 Frac. Max-pool (Graham, 2014) (1 test)
95.59 All Conv. Net (Springenberg et al., 2014)
95.83 WResNet (28 layers; 160 fm) (Zagoruyko & Ko-

modakis, 2016)
96.53 Frac. Max-poola (Graham, 2014) (100 tests)
96.26 DenseNets (100 layers) (Huang et al., 2016a)
95.60 Our CRMN (28 layers; 160 fm), RRLR
95.84 Our CRMN (32 layers; 192 fmb), RRLR

Table 3. CIFAR-10 Accuracies.
a An accuracy of 96.53% was obtained using the Fractional

Max-pooling approach in (Graham, 2014); however, it was ob-
tained using 100 tests; using a single test the method in (Graham,
2014) yielded 95.5%

bfm represents the number of feature maps in the first convo-
lutional layer of the ResNet

5. Discussion and Conclusions
We have explored a novel deep convolutional network ar-
chitecture that uses an LSTM which iterates on the increas-
ing abstraction offered by the CNN, as opposed to a time

series or a sequence as it traditionally does. Our formula-
tion thus allows CNNs to be extended with a parallel net-
work taking intermediate representations as input and sub-
jecting them to alternative algorithmic manipulations of the
type suitable for iterative inference and structured predic-
tion. In a structured prediction (more specifically, keypoint
detection) context, we observe that our architecture yields
results comparable with the current state-of-the-art method
(with only a 6-8% increase in the error), but substantially
decreases the number of parameters (by around 28%). Re-
markably, it radically reduces the computational cost (mea-
sured in terms of the number of floating point operations)
by a factor of around 23x. This is especially significant
with the advent of the adoption of deep learning techniques
on mobile platforms, where models must particularly be
computationally efficient because processing power is at a
premium.

In addition, the proposed architecture is not tailor made
to the keypoint prediction problem, and can easily be ex-
tended to the classification domain with almost no changes
to the model. We have provided experiments on the stan-
dard CIFAR-10 and CIFAR-100 classification benchmarks
using our proposed approach. We observed that our model
yields results that are extremely competitive with the state-
of-the-art in a classification context.

Other recent work has also underscored the connections be-
tween ResNets and RNNs, highlighting the potential com-
putational advantages of using RNNs as well as the biolog-
ical plausibility of such constructions (Zheng et al., 2015).
Their work emphasized the potential to reduce the number
of parameters of a ResNet using analogous RNNs. One
of the main observations and conclusions from our work
is that the additional RNN pipeline in our formulation al-
lows the overall computation of a model to be reduced, and
affords dramatically improved performance over similarly
configured ResNet-only architectures.

ACKNOWLEDGMENTS

We are grateful to Christopher Beckham for helpful dis-
cussions and feedback. We thank the developers of Theano
(Team et al., 2016) and Lasagne (Dieleman et al., 2015).
We would also like to thank Samsung for supporting this
research.

References
Ballas, Nicolas, Yao, Li, Pal, Chris, and Courville, Aaron.

Delving deeper into convolutional networks for learning
video representations. arXiv preprint arXiv:1511.06432
and Proc. ICLR 2016, 2015.

Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun,
and Bengio, Yoshua. Empirical evaluation of gated re-



Deep CNNs with Non-convolutional Recurrent Memory for Structured Prediction

current neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

Dieleman, Sander, Schlter, Jan, Raffel, Colin, Olson, Eben,
Snderby, Sren Kaae, Nouri, Daniel, et al. Lasagne: First
release., August 2015. URL http://dx.doi.org/
10.5281/zenodo.27878.

Goodfellow, Ian J, Warde-Farley, David, Mirza, Mehdi,
Courville, Aaron, and Bengio, Yoshua. Maxout net-
works. arXiv preprint arXiv:1302.4389, 2013.

Graham, Benjamin. Fractional max-pooling. arXiv
preprint arXiv:1412.6071, 2014.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. arXiv
preprint:1512.03385, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Identity mappings in deep residual networks. arXiv
preprint:1603.05027, 2016.

Honari, Sina, Yosinski, Jason, Vincent, Pascal, and Pal,
Christopher. Recombinator networks: Learning coarse-
to-fine feature aggregation. In In Proc. CVPR, 2016.

Huang, Gao, Liu, Zhuang, and Weinberger, Kilian Q.
Densely connected convolutional networks. arXiv
preprint arXiv:1608.06993, 2016a.

Huang, Gao, Sun, Yu, Liu, Zhuang, Sedra, Daniel, and
Weinberger, Kilian. Deep networks with stochastic
depth. arXiv preprint arXiv:1603.09382, 2016b.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple
layers of features from tiny images, 2009.

Moniz, Joel and Pal, Christopher. Convolutional residual
memory networks. arXiv preprint arXiv:1606.05262,
2016.

Sagonas, Christos, Tzimiropoulos, Georgios, Zafeiriou,
Stefanos, and Pantic, Maja. 300 faces in-the-wild chal-
lenge: The first facial landmark localization challenge.
In Proc. ICCV Workshops, pp. 397–403, 2013.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Singh, Saurabh, Hoiem, Derek, and Forsyth, David A.
Swapout: Learning an ensemble of deep architectures.
arXiv preprint arXiv:1605.06465, 2016.

Springenberg, Jost Tobias, Dosovitskiy, Alexey, Brox,
Thomas, and Riedmiller, Martin. Striving for sim-
plicity: The all convolutional net. arXiv preprint
arXiv:1412.6806 and ICLR 2015, 2014.

Srivastava, Rupesh K, Greff, Klaus, and Schmidhuber,
Jürgen. Training very deep networks. In Advances in
Neural Information Processing Systems, pp. 2368–2376,
2015.

Team, The Theano Development, Al-Rfou, Rami, Alain,
Guillaume, Almahairi, Amjad, Angermueller, Christof,
Bahdanau, Dzmitry, Ballas, Nicolas, Bastien, Frédéric,
Bayer, Justin, Belikov, Anatoly, et al. Theano: A python
framework for fast computation of mathematical expres-
sions. arXiv preprint arXiv:1605.02688, 2016.

Zagoruyko, Sergey and Komodakis, Nikos. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Zheng, Shuai, Jayasumana, Sadeep, Romera-Paredes,
Bernardino, Vineet, Vibhav, Su, Zhizhong, Du, Dalong,
Huang, Chang, and Torr, Philip HS. Conditional random
fields as recurrent neural networks. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 1529–1537, 2015.

http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878

