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Abstract

Numerical weather models generate a vast
amount of information which requires human in-
terpretation to generate local weather forecasts.
Convolutional Neural Networks (CNN) can ex-
tract features from images showing unprece-
dented results in many different domains. In this
work, we propose the use of CNN models to in-
terpret numerical weather model data which, by
capturing the spatial and temporal relationships
between the input variables, can produce local
forecasts. Different architectures are compared
and a methodology to introspect the models is
presented.

1. Introduction

Weather forecasting is based on Numerical Weather Pre-
dictions (NWP) that capture the state of the atmosphere and
simulate its evolution based on physical and chemical mod-
els. Global NWP models normally provide a large number
of parameters representing different physical variables in
space and time. Because of the lack of spatial and tempo-
ral resolution, these fields need to be interpreted by highly
qualified personnel to produce forecasts for any specific re-
gion. This is still today a human based process, which re-
lies on specifically trained and experienced professionals to
interpret modeled and observed data (Wilson et al., 2017;
Gravelle et al., 2016). NWP variables define the state of the
atmosphere and its changes through space and time. NWPs
define a highly structured dataset in which the relationships
between its variables are defined by physics equations, such
as conservation of mass, momentum and energy.

Recent advances in neural networks have proven that by
increasing the number of general hidden layers, unprece-
dented results can be achieved in many different domains.
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More specifically, research around Convolutional Neural
Networks (CNN) (Krizhevsky et al., 2012) has proven to
be very effective in solving image classification and seg-
mentation problems.

Machine learning has been applied to different areas of
weather forecasting, such as downscaling (Tripathi et al.,
2006) or nowcasting (Xingjian et al., 2015). The main de-
ficiency of the traditional methodologies is their inability
to incorporate both the spatial and temporal components
present in the data. Most of the existing research in this
field has been based on manually extracting the points in a
model representing a certain location, and training models
with the resulting data. The problem with this approach is
that weather is a dynamic system, and analysing individual
points in isolation misses important information contained
in the synoptic and meso-scales.

CNNSs enable analysis and extraction of the spatial infor-
mation in images, building from fine grained details into
higher level structures. The temporal dimension can be
added to these networks by adding a third axis to the convo-
lutional kernels. This work demonstrates how CNNs can be
used to interpret the output of Numerical Weather Predic-
tion (NWP) automatically to generate local forecasts. The
main outcomes of this work are:

e CNNss are able to provide a model to interpret numeri-
cal weather model fields directly and to generate local
weather forecasts.

e (lass Activation Mapping (CAM) provides a valuable
mechanism to assess the spatial and temporal correla-
tions of the different fields visually, helping to intro-
spect and develop new models.

e 3D convolutions can naturally incorporate the tempo-
ral component into neural networks, significantly im-
proving the accuracy of the results.

2. Datasets

For this work, we propose the use of NWP and observed
precipitation data from different locations, to experiment
with different configurations of CNN models. The objec-
tive is to train a model which predicts the event of rain for a
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Figure 1. a) represents the 3 geopotential subsets extracted from ERA-Interim, corresponding to different heights of the atmosphere,
stacked over a map to represent the spatial extent. b) Represents the whole extracted time series and the alignment of both datasets.

particular location, using numerical weather model data as
input. In this section, we describe how these datasets have
been generated.

ERA-Interim (Dee et al., 2011) is a publicly available mete-
orological reanalysis dataset from the European Centre for
Medium-Range Weather Forecasts (ECMWF). This dataset
is generated using a numerical weather model which simu-
lates the state of the atmosphere for the whole planet, with
a spatial resolution of approximately 80 km. There is data
available since the year 1979, with a temporal resolution
of 3 hours. The output is presented in the form of regu-
lar numerical grids and there is a large number of physical
parameters available, representing variables such as tem-
perature, wind speed and relative vorticity.

Aviation Routine Weather Reports (METARS) are opera-
tional aviation weather text reports that encode observed
meteorological variables for every commercial airport in
the world. METARs are produced with an hourly or half-
hourly frequency and are also made publicly available
through the World Meteorological Organisation (WMO)
communications system. Each report is uniquely identified
by its header, which contains the International Civil Avi-
ation Organization (ICAO) airport code and a UTC time
stamp.

We considered 5 main airports located in different cities
across Europe and a period of 5 years (2012-2017) to
perform our experiments. The airports and their cor-
responding ICAO codes are: Helsinki-Vanta (EFHK),
Amsterdam-Schiphol (EHAM), Dublin (EIDW), Rome-
Fiumicino (LIRF) and Vienna (LOWW).

We extracted an extended area over Europe from ERA-
Interim, creating a 3 hourly series of images composed by
3 bands, corresponding to the geopotential height z at the
1000, 700 and 500 pressure levels of the atmosphere. This
parameter represents the height in the atmosphere at which

a certain pressure value is reached and the levels corre-
spond typically to 100, 3000 and 5500 metres above the
mean sea level respectively.

The reason for selecting these fields is that weather fore-
casters normally base their predictions on these. They con-
tain information about the shape, location and evolution of
the pressure systems in the atmosphere.

Using the METAR data, the precipitation conditions [rain,
dry] were extracted for each airport for the same time pe-
riod and frequency. The resulting dataset time series con-
tains over 12000 samples. Figure 1 represents a sample of
the considered ERA-Interim fields with their size and geo-
graphical extent on the left. The right side, shows how the
ERA-Interim data aligns with the observed precipitation for
a sample location.

3. Experiments and Results

The objective of the proposed experiment is to predict pre-
cipitation events for the considered airports using ERA-
Interim geopotential data as the input and METAR obser-
vations to annotate the samples [rain, dry]. Two different
CNNss are used. The first model performs 2D convolutions
and the second incorporates the temporal dimension based
on 3D convolutions (Ji et al., 2013). We aim to prove that
these models can capture part of the mental and intuitive
process that human forecasters follow when interpreting
numerical weather data.

3.1. CNN architecture

To perform the experiments, a 2 layer CNN is used. Each
convolution layer uses a 3x3 kernel followed by a 2x2 max-
pooling layer. After the convolution operations, a fully con-
nected layer is used to connect the output [rain, dry] using
a ’softmax’ activation function.
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Table 1. Rain forecasting accuracies for the different locations
comparing 2D and 3D CNNs with the reference accuracy of cli-
matology.

AIRPORT RAINCLIM. 2D CNN 3D CNN
EFHK 60.8 73.6 75.4
EHAM 74.2 77.8 79.3
EIDW 61.2 70.7 72.6
LIRF 83.1 87.3 88.2
LOWW 75.7 77.1 78.8

For the 3D CNN, the configuration is similar to the previ-
ous version, but the kernels in both the convolution and
max-pooling layers have an extra dimension, with sizes
3x3x3 and 2x2x2 respectively. The 3D CNN, is trained
by aggregating the input dataset in groups of 8 consecutive
images. This aggregation represents the evolution of the at-
mosphere over 24 hours. The neural network can then ex-
tract information out of the temporal dimension, using the
observation corresponding to the last image of the series as
output.

The 2D and 3D CNNs were implemented in TensorFlow
(Abadi et al., 2016) and trained per airport over 300 epochs
using 80% of the data. The remaining 20% was used as
validation to test the accuracy of the models.

3.2. Results

Table 1 contains the results produced by the different mod-
els using the validation dataset. The accuracy values rep-
resent the success rate of the model when predicting either
rain or dry conditions for each location. The climatology
for each location, number of rain observations over the to-
tal number of observations, is also included in the results as
a reference. A model whose output is always *dry’ would
have that success rate.

Figure 2 represents the results using a stacked bar chart.
The relative improvement over climatology achieved with
the 2D and 3D convolutional models is represented by the
green and red fractions of the bar.

3.3. Class Activation Mapping

Class Activation Mapping (CAM) (Zhou et al., 2016) is a
technique that localises class-specific image regions in a
trained CNN.

This technique uses the last layer of a CNN to create a
graphical representation for a particular output based on
its weights. The resulting image is a heat-map represent-
ing which parts of the image have a higher influence in the
output.

For example, Figure 3 depicts two different CAM repre-

100
EEE Climatology ~ EEEl CNN2D  EEE CNN3D

3

5

Rain Forecast Accuracy

EFHK EHAM EIDW LIRF Loww
Airport

Figure 2. Accuracy results obtained for the different airports and
methodologies.

sentations for the 2D CNN models trained using the pre-
cipitation data of Helsinki and Rome. Warmer colours in
the image represent higher weight values, so the network
makes its decisions mostly based on the features located in
those areas. The images in Figure 3 corroborate the intu-
itive idea that local weather patterns have a higher influence
than distant ones when forecasting the weather of a partic-
ular location. The images have been overlaid with a coast
map to serve as a reference for the relative position of the

structures in the heat-maps.

=

Figure 3. Example of the resulting Class Activation Maps for an
ERA-Interim CNN trained using the observed precipitation at
Helsinki-Vantaa airport, EFHK, (top) and Rome Fiumicino air-
port, LIRF, (bottom). Coastlines have been overlaid as a reference
for readers.

This technique has been proven very useful for visually as-
sessing the soundness of a CNN model. Another use could
be for input variable selection, identifying NWP parame-
ters which show a higher correlation with respect to the
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class to be predicted.

3.4. Software and Data

The code used to run all the experiments included in this
work and instructions on how to access the correspond-
ing datasets are available at the following repository:
http://github.com/pr1900/DeepWeather

4. Conclusions and future work

This work demonstrates how CNNs can be directly applied
to the output of numerical weather models by using ob-
served data to annotate the samples. The design of the
CNNSs used in our experiments is very simple compared
to some of the state-of-the-art architectures (Simonyan &
Zisserman, 2014; Szegedy et al., 2015). Despite their sim-
plicity, results show that convolutional layers can be used
to interpret the output of weather models.

The NWP parameters used in the experiments are not di-
rectly correlated to the precipitation output variable. NWPs
have many other variables, such as humidity, vorticity or
even total precipitation, that could be used to forecast pre-
cipitation patterns with better accuracy. The purpose of this
initial experiment was to demonstrate that CNNs can learn
certain configurations of the atmospheric pressure systems
and associate them with precipitation events (fronts, con-
vection, etc).

Apart from weather model interpretation, these techniques
open a new research pathway for the automatic generation
of derived products. Some of the variables contained in
NWPs are computed based on parameterisations or statis-
tical models instead of physical equations. We think that
these variables can be computed using CNN based models,
potentially offering better results.

Acknowledgements

The authors wish to acknowledge funding from the Aus-
tralian Government Department of Education, through the
National Collaboration Research Infrastructure Strategy
(NCRIS) and the Education Investment Fund (EIF) Su-
per Science Initiatives through the National Computational
Infrastructure (NCI), Research Data Storage Infrastructure
(RDSI) and Research Data Services Projects.

References

Abadi, Martin, Agarwal, Ashish, Barham, Paul, Brevdo,
Eugene, Chen, Zhifeng, Citro, Craig, Corrado, Greg S,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, et al. Ten-
sorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467,

2016.

Dee, DP, Uppala, SM, Simmons, AJ, Berrisford, Paul, Poli,
P, Kobayashi, S, Andrae, U, Balmaseda, MA, Balsamo,
G, Bauer, P, et al. The era-interim reanalysis: Configu-
ration and performance of the data assimilation system.

Quarterly Journal of the royal meteorological society,
137(656):553-597, 2011.

Gravelle, Chad M, Runk, Kim J, Crandall, Katie L, and
Snyder, Derrick W. Forecaster evaluations of high tem-
poral satellite imagery for the goes-r era at the nws oper-

ations proving ground. Weather and Forecasting, 31(4):
1157-1177, 2016.

Ji, Shuiwang, Xu, Wei, Yang, Ming, and Yu, Kai. 3d con-
volutional neural networks for human action recognition.
IEEE transactions on pattern analysis and machine in-
telligence, 35(1):221-231, 2013.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097-1105, 2012.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Du-
mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.
Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-9, 2015.

Tripathi, Shivam, Srinivas, VV, and Nanjundiah, Ravi S.
Downscaling of precipitation for climate change scenar-
ios: a support vector machine approach. Journal of Hy-
drology, 330(3):621-640, 2006.

Wilson, Katie A, Heinselman, Pamela L, Kuster,
Charles M, Kingfield, Darrel M, and Kang, Ziho. Fore-
caster performance and workload: Does radar update
time matter? Weather and Forecasting, 32(1):253-274,
2017.

Xingjian, SHI, Chen, Zhourong, Wang, Hao, Yeung, Dit-
Yan, Wong, Wai-Kin, and Woo, Wang-chun. Convolu-
tional Istm network: A machine learning approach for
precipitation nowcasting. In Advances in Neural Infor-
mation Processing Systems, pp. 802-810, 2015.

Zhou, Bolei, Khosla, Aditya, Lapedriza, Agata, Oliva,
Aude, and Torralba, Antonio. Learning deep features for
discriminative localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 2921-2929, 2016.


http://github.com/prl900/DeepWeather

