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Abstract

A cost-sensitive learning objective is often im-
portant for a neural model to achieve good per-
formance in many structured problems. An ideal
objective should penalize an incorrect label by its
structural discrepancy and a correct label by zero.
Since this is non-convex and non-differentiable,
one typically turns to a convex surrogate loss in
practice (Tsochantaridis et al., 2004). A widely
used surrogate ismargin rescalingwhich pro-
motes the score of the true label to be greater
than the loss-augmented score of the best la-
bel. However, for problems with large struc-
tural costs, this formulation is not faithful to the
ideal objective: even when all structures are cor-
rectly classified, the loss may remain high. Con-
sequently, the model wastefully updates parame-
ters on correct instances during training. In this
work, we focus on an alternative cost-sensitive
objective calledslack rescaling. Unlike margin
rescaling, slack rescaling is invariant to the abso-
lute values of structural costs and ignores labels
that are already well-separated. This can be seen
as a tighter approximation to the ideal objective.
Inference with slack rescaling is in general in-
tractable, but we adapt recent development of an
efficient inference algorithm to the deep network.
We evaluate our approach on neural graph-based
dependency parsing and report promising results.

1. Introduction

In many structured problems, it is often important to care-
fully account for structural properties of the label space
to achieve good performance. This need arises in neural
network modeling across many disciplines such as natural
language processing (NLP), computer vision, and speech
recognition (Bakir et al., 2007). As a concrete example, in
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the graph-based neural dependency parser ofKiperwasser
& Goldberg(2016) which is trained using structured hinge
loss, the accuracy of the parser plunges from 91 to 79.4
when the training objective disregard structural costs.

Structured prediction concerns many interesting real world
problems where there exists an internal structure within its
output(Bakir et al., 2007). A few examples are dependency
parsing in natural language processing, segmentation task
in computer vision, and speech recognition task. In such
examples, output label is consists of micro-labels, and its
relationship within the micro-label is expressed by a struc-
ture, for instance, a tree or a sequence.

In the era of deep networks due to surprising success in
various fields (Krizhevsky et al., 2012)(Goodfellow et al.,
2014), building a deep structured model to deal with the
structured task is an important task, and it is well motivated
by the success in many fields(Chen et al., 2015; Schwing &
Urtasun, 2015).

Incorporating the structure in the model is the essence of
the structured models. One of the most well-studied ap-
proaches is to incorporate the structure into the loss func-
tion. This is called cost-sensitive learning. Compare to zero
one flat loss where the loss is one if predicted label is dif-
ferent from the true label or zero if correct, in cost-sensitive
learning, different loss incurs respect to the structure of the
labels, i.e. the loss is calculated by modeling how the la-
bels are different. (Tsochantaridis et al., 2004) introduced
convex surrogate loss for the cost-sensitive losses, called
margin rescaling and slack rescaling.

Two formulations differ how the most violating label is cal-
culated. While margin rescaling criteria is a sum of the fea-
ture score and the label score, the slack rescaling criteria is
a product between the two. This enables margin rescaling
to be computationally efficient since the interplay between
the two scores is not global, and can be decomposed re-
spect to the substructure. However, margin rescaling can
be dominated by one score alone, feature score or label
score. This is problematic for a large structured problem
since even for the label which is well separated, it can be
considered as a violating label if label score is high. There-
fore, the constraints of the margin rescaling is hard to be
satisfied. On the other hand, criteria of slack rescaling is a
product of the two scores, and it is difficult for the label to
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be considered as the most violating label if it has only one
high score. Specifically, labels with a margin larger than a
constant margin of one cannot be the most violating label.
However, the interplay between the two score is global, and
does not decompose with respect to the substructure. Thus,
loss augmented inference in slack rescaling formulation is
computationally intensive, and intractable for large struc-
tures.

To reduce the computational burden of loss augmented in-
ference,Sarawagi & Gupta(2008) introduced a method uti-
lizing margin rescaling inference as an oracle, and by call-
ing this oracle iteratively to obtain an approximated slack
rescaling argmax label. However, the drawback of the ap-
proach that makes the approach impractical is that it in-
volves binary search over scalar, which can take tens of
iterations. A dynamic programming approach is proposed
In (Bauer et al., 2014) for a simple structures.Choi et al.
(2016) improves upon (Sarawagi & Gupta, 2008) for ef-
ficient optimization and extends to finding exact optimum
with a small modification of the margin rescaling oracle. In
this paper, we show that the iterative oracle apporach can
be efficiently used in deep network. We demonstrate that
in practice approximated slack rescaling can be done al-
most as same computational complexity as margin rescal-
ing, calling oracle only 2 to 3 times in average in the later
stage of the optimization.

We mainly consider the dependency parsing problem in
NLP investigated in (Kiperwasser & Goldberg, 2016). We
demonstrate that this slack rescaling approach can be uti-
lized in deep network efficiently to achieve a slighter higher
performance. This paper is organized as follows: Firstly,
we review two convex surrogate losses, margin rescaling
and slack rescaling, and compare the pros and the cons of
the two approaches. Secondly, we briefly describe how
we adapt slack rescaling to the deep network. Thirdly,
we visit our main focused application of dependency pars-
ing. Fourthly, we show the empirical evaluation of our ap-
proach. We conclude with discussions.

2. Two Surrogate Losses

In this section, we review the two surrogate losses
mostly based on (Choi et al., 2016). Structural
SVM(Tsochantaridis et al., 2004; Taskar et al., 2003) with
a margin rescaling formulation is defined as

min
w,ξ

C

2
‖w‖22 +

1
n

∑

i

ξi (1)

s.t. fi(yi)− fi(y) ≥ Δ(y, yi)− ξi ∀i, y ∈ Y

ξi ≥ 0 ∀i

whereC is the regularization constant. The slack rescaling
formulation is

min
w,ξ

C

2
‖w‖22 +

1
n

∑

i

ξi (2)

s.t. fi(yi)− fi(y) ≥ 1−
ξi

Δ(y, yi)
∀i, y ∈ Y

ξi ≥ 0 ∀i

The important property of the surrogate losses are it is a
convex upper bound of the task lossΔ(y, yi). Too see the
difference of the two directly, letm(y) = f(yi)− f(y) be
the margin of label ofyi for a certain instance. Then, the
loss occurred by labely in both formulations are

Margin: ξM (y) = Δ(y, yi) − m(y) (3)

Slack:ξS(y) = Δ(y, yi) (1 − m(y)) (4)

And the empirical loss for the instance is defined as max
over the label

Margin: ξM = max
y

ξM (y) (5)

Slack:ξS = max
y

ξS(y) (6)

SinceξM (yi) = ξS(yi) = 0, the loss is non-negative.
Two main differences of the two surrogate losses are the
tightness and the constraint set of labelY . To be specific,
slack rescaling is tighter to the task lossΔ(y, yi) than mar-
gin rescaling when the instance is on the correct side of
the classification boundary,m(y) > 0, and the other way
when the instance is on the wrong side of the classification
boundary . Also, slack rescaling considers a much smaller
set of constraint set ofY disregarding labels which are al-
ready well separated.

The first argument can be shown easily by showing follow-
ing, givenL(y, yi) ≥ 1

Δ(y, yi) ≤ ξS(y) ≤ ξM (y) if m(y) > 0.

Δ(y, yi) ≤ ξM (y) ≤ ξS(y) if m(y) < 0.

Since the deep network is a powerful model, by increasing
the power of the deep network, we can expect all the train-
ing margin to be well classified. Then, the slack rescaling
loss is much closer to the target loss than margin rescal-
ing, especially for large structures with a large target loss
maxy,yi Δ(y, yi). Therefore, slack rescaling more prefer-
able objective than the margin rescaling for the deep net-
work.

The other difference is the label constraint set. Since
ξM (yi) = ξS(yi) = 0 and objective function takes maxi-
mum over the labels, we can disregardy such thatξm(y) <
0 or ξs(y) < 0 not changing theξi. Writing down this label
set explicitly,

Margin: Ỹm = {y|Δ(y, yi) < m(y)} (7)

Slack:Ỹs = {y|1 < m(y)} (8)
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We can immediately see that̃Ym ⊆ Ỹs, and while slack
rescaling removes all well separated labels from the con-
sideration, margin rescaling is more conservative by re-
moving the labels by only removing labels separated with a
large margin. This implies that slack rescaling has less con-
straints to satisfy, and in turn easy to satisfy by removing
unnecessary labels, and margin rescaling is hard to satisfy.

However, the main caveat for the slack rescaling is the
computational cost. To see this, denoteh(y) as score
function and error function asg(y). For margin rescal-
ing h(y) = f(y) − f(yi) and for slack rescalingh(y) =
1 + f(y) − f(yi), andg(y) = Δ(y, yi) for both. Then,
the slack rescaling objective is the product between the
two, h(y)g(y) and for the margin rescaling it is the sum,
h(y) + g(y). Since often for tractable structural problems,
label decomposes over the substructure, and finding the
maximum label in margin rescaling can benefit from the de-
composition since the objective function also decomposes
over the substructure. However, slack rescaling cannot ben-
efit from the decomposition since the objective function is
the product between the two, and it does not decompose
over the substructure. Therefore, it is often intractable to
do max slack rescaling label search for a large structure.
We discuss this problem in the next section.

3. Adaptation to Deep Network

Here we describe the method to learn with slack rescaling
formulation in the deep network. Moving from the margin
rescaling formulation to slack rescaling formulation can be
straightforward. This method can be widely applicable to
the models that is using margin rescaling by changing the
loss from (5) to (6). Since the update is mostly done via
SGD, we only need to change argmax label of (5) to that
of (6). This is the approach in (Choi et al., 2016) described
in Algorithm 2. We can scale the label error function byλ
and find the argmax label in margin rescaling formulation
iteratively. Method to find the nextλ depends on the algo-
rithm. We use variant of Bisecting search in (Choi et al.,
2016), Then, we update the network according to the maxi-
mum label in slack rescaling formulation among the labels
we found varyingλ noted asS in the Algorithm2.

3.1. Expending label set for generalization

In the previous section, we briefly described that slack
rescaling deals with the smaller label set by removing well-
separated labels from the consideration. While there is a
benefit to this, the small label set might result failing to
find the most violating label, resulting zero gradients for
instances in the early stage of the learning. This encour-
ages to expand the label set so that deep net can learn more
from the data in case of the zero gradients. We accom-
plish this by first finding slack rescaling label, and in the

case when there is no violating slack rescaling label, we
learn with the margin rescaling argmax label. This can be
viewed as expending required margin. We call this proce-
dure slack-margin rescaling.

Algorithm 1 Slack rescaling argmaxsearch

S ← ∅, λ← 0
for t = 1, ..., do

λ← f(S, λ)
yt = arg max h(y)+λg(y)
if yt ∈ S then

returnarg maxy∈S h(y)g(y)
end if
S ← S ∪ {yt}

end for

Algorithm 2 Slack-margin rescaling argmaxsearch

y = arg max h(y)g(y)
if y = yi then

returnarg max h(y) + g(y)
else

returny
end if

4. Experiments

We experimented with the-state-of-the-art neural depen-
dency parser described in (Kiperwasser & Goldberg, 2016).
It uses margin scaling formulation. In the problem, ex-
ploiting the structure is found crucial in for the high per-
formance as described in the introduction. For the argmax
search algorithm, we used a variant of the bisecting search
of (Choi et al., 2016), and by efficiently making use of the
label cache, we only need to search argmax margin scaling
label less than 3 times in the later epoch. We trained for a
full dataset for 30 epochs, and report result on the dev set.

5. Discussion

We adapted slack rescaling approach to the deep neural net-
work to achieve higher performance than the margin rescal-
ing. We showed that a careful choosing ofλ can lead to
efficient slack rescaling so that it can be deployed in the
large deep network. This implies that slack rescaling can
be widely used for other structural tasks where the deep
network is used.

Algorithm Margin Slack Slack-Margin
Labeledattachment 91.0 90.7 91.2

Unlabeledattachment 92.7 92.4 92.9

Table 1.: Results on the Treebank dataset
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