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Abstract

Energy-based prediction defines the mapping
from an input x to an output y implicitly, via
minimization of an energy function E

x

(y). In
certain machine learning tasks, such as informa-
tion retrieval or recommender systems, we do not
predict an individual value for y, but instead a set
of diverse predictions. Unfortunately, extending
energy-based prediction to this context is non-
trivial. One available approach is to first learn the
energy function by conditional density estima-
tion of y given x, and then gather a set of predic-
tions by sampling from the conditional distribu-
tion or finding its multiple modes. For structured
prediction energy networks (Belanger & Mc-
Callum, 2016), density estimation is intractable,
however, and approximate approaches require
slow, difficult-to-tune MCMC. In response, this
paper presents an alternative approach, where we
directly learn a randomized predictor end-to-end
such that it can be used to yield diverse sets of
high-quality predictions.

1. Introduction

Let x be the input to a prediction problem and y be the out-
put. In various machine learning applications, we predict
multiple values for y. For example, in information retrieval
or recommender systems, the user is often presented with a
small list of results. This is more effective than providing
a single result, since it increases the chance of returning a
relevant prediction and the user’s experience is not dimin-
ished by the process of choosing among a few options. For
problems where the distribution of high-quality y given x

is multi-modal, predicting a set of results is particularly im-
portant. For example, the query ‘jaguar’ may refer to either
a car or an animal.

Structured Prediction Energy Networks (SPENs) (Belanger
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& McCallum, 2016) are a useful energy-based approach to
structured prediction. A deep network is used to define an
energy function E

x

(y) over candidate outputs and predic-
tion is performed by gradient-based energy minimization.
In Belanger et al. (2017), the authors present an accurate
and user-friendly end-to-end training method. See Sec. 2
for an overview.

One approach to predicting a set of K values using a SPEN
is to fit the conditional distribution P(y|x) and then sample
from it K times. Rather than sampling, we could also use
a procedure that targets high-probability y, such as finding
the local modes of a multi-modal distribution.

For SPENs, it is natural to define the distribution

P(y|x) / exp(�E

x

(y)). (1)

Since the energy can be a general deep architecture, this
is sufficiently flexible to represent sophisticated multi-
modal distributions. Unfortunately, exact conditional max-
imum likelihood estimation for (1) is typically intractable.
In addition, MCMC-based approximate learning methods
(Sec. 4) are often slow and difficult to tune. Similar diffi-
culties are present when we seek to query this distribution
at test time for samples or local modes.

In response, this paper introduces an alternative learning
and prediction approach, where we train a randomized pre-
dictor end-to-end such that sets of predictions are high-
quality (Sec. 5). This adapts the approach of (Guzman-
Rivera et al., 2012) for training a fixed ensemble of in-
dependent predictors and can also be seen as a non-
probabilistic method for fitting the randomized optimum
model of Tarlow et al. (2012).

Our randomized method is defined by first uniformly sam-
pling a value for y and then proceeding with determinis-
tic gradient-based energy minimization that is initialized at
this location. This can be seen as a discriminative method
for learning energy functions such that optimization with
random restarts is effective. Through simple preliminary
experiments on a synthetic dataset with multi-modal y, we
demonstrate that our method performs better and is sub-
stantially easier to tune than an approach that requires den-
sity estimation.
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2. Structured Prediction Energy Networks

A SPEN is a particular energy-based model (LeCun et al.,
2006) that uses a deep neural network to define an energy
function E

x

(y) over structured y. Prediction is performed
by (approximately) minimizing the energy with respect to
y. Of course, Belanger & McCallum (2016) is not the ear-
liest work to define deep energy functions for structured
prediction. The principal novelty of Belanger & McCal-
lum (2016) and Belanger et al. (2017) is that the energy
function is treated as a black-box that only provides sub-
routines for forward and back-propagation. This contrasts
with other works employing model-specific algorithms that
exploit certain factorization structure of the energy.

Given this limited interface to the energy function, it is
natural to perform (approximate) energy minimization us-
ing gradient descent. Consequently, SPENs are defined for
continuous y. For discrete prediction problems, the SPEN
is defined on a convex relaxation.

SPENs can be learned end-to-end (Belanger et al., 2017).
Here, a first-order energy minimization method is unrolled
into a differentiable computation graph, which can then
be trained using standard gradient-based learning methods
for deep networks. Any hyperparameters of the energy
mininization algorithm, such as per-iteration learning rates,
can also be learned. Essentially, we train the energy such
that gradient-based prediction yields high-quality predic-
tions. A principal advantage of this training method is that
it returns not just an energy function, but also an actual en-
ergy minimization procedure to be used at test time.

3. Evaluating Set-Valued Predictors

Consider a predictor that takes x as input and returns a set
of predictions y1, . . . ,yK

, where each y

k

may be a uni-
variate prediction or a structured object. Let y

⇤ be the
ground truth. Let �(y,y

⇤
) be the cost function of predict-

ing y. Our experiments in Sec 6.1 employ the Oracle-K
cost (Guzman-Rivera et al., 2012), defined as:

�

K

(y1, . . . ,yK

,y

⇤
) = min

k

�(y

k

,y

⇤
). (2)

This is low whenever any of the predictions is close to y

⇤.
When P(y|x) is multi-modal, the loss will be low only
when the set of predictions is covers the high-density re-
gions of P(y|x). In many applications, (2) precisely quan-
tifies test-time performance. For example in information
retrieval, we may be interested in recall at K.

In future work, it may be interesting to employ loss func-
tions that explicitly encouraging diversity among the pre-
dictions (Kulesza & Taskar, 2010; Guzman-Rivera et al.,
2014). Our approach could also be used as a way to train
the scoring model and sampler used for approximate mini-
mum Bayes risk prediction (Premachandran et al., 2014).

4. Approximate Conditional Likelihood

Learning for SPENs

Exact maximum likelihood (MLE) learning of the Gibbs
distribution (1) is intractable in general. In response,
we can perform stochastic MLE training (Younes, 1989)
(SMLE). This is also known as persistent contrastive di-
vergence (Tieleman, 2008). Let x

i

,y

i

be a given training
example. Let y

s

be a sample from the conditional distri-
bution (1) with x = x

i

. Then, a stochastic gradient of the
conditional log-likelihood of y

i

given x

i

is:

�rE

xi(yi

) +rE

xi(ys

), (3)

where the gradient is taken with respect to the learned pa-
rameters of network defining E

xi(·). As noted in Sec. 2, we
focus on the regime where the energy function is a black
box that only provides subroutines for forward and back-
propagation. Here, it is natural to sample from (1) using
Hamiltonian Monte Carlo (HMC) sampling (Neal et al.,
2011), an MCMC scheme that leverages gradients of the
distribution’s log-density. See (Swersky et al., 2010) for a
derivation of SMLE, conditions under which it will con-
verge to the true MLE estimate, and a discussion of its ad-
vantages vs. contrastive divergence (Hinton, 2002). Fi-
nally, Tarlow et al. (2012) present a method for approxi-
mate MLE for similar randomized predictors as those in
the next section. Crucially, however, our method does not
rely on the tractability of exact energy minimization.

5. End-to-End Learning for Randomized

Set-Valued Predictors

While conditional density estimation is conceptually attrac-
tive, it may not yield good oracle cost (2) in practice. First
of all, it does not directly provide a test-time prediction
procedure, and thus we will need to separately tune our
energy minimization method. Second, it requires accurate
MCMC in the inner loop, and this may be very challenging
to tune. Here, tuning is particularly difficult because the
overall scale of the energy function may change tremen-
dously over the course of learning, and thus the sampling
hyperparameters will need to be updated on the fly.

This section proposes an alternative approach, where we di-
rectly minimize the Oracle-K cost (2) end-to-end. Given an
energy function E

x

(·), let P
R

(y;E) be a distribution over
randomized predictions. This may be completely different
than the Gibbs distribution (1) induced by the energy. We
assume that the cost � is differentiable in its first argument.

Furthermore, we assume that P
R

(y;E) supports the
reparametrization trick (Kingma & Welling, 2014), where
samples can be obtained by evaluating a differentiable, de-
terministic function M(x, ✏) that depends on x and an ex-
ternal source of randomness ✏ ⇠ P

✏

. The advantage of the
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reparametrization trick is that the distribution P
✏

we take
an expectation with respect to his not part of our learned
model. We have the expected Oracle-K cost:

E
yk⇠PR(y E)�K

(y1, . . . ,yK

,y

⇤
)

= E
✏1,...,✏K⇠P✏�(M(x, ✏1), . . . ,M(x, ✏1),y

⇤
) (4)

It is straightforward to compute a stochastic subgradient of
the right hand side. We first sample K random values ✏

k

and evaluate the cost �(M(x, ✏

k

),y

⇤
) for each. Then, we

set ✏ to whichever ✏
k

yielded the lowest cost and peform
back-propagation in �(M(x, ✏),y

⇤
).

For a given energy function, there are many ways to de-
fine a randomized sampling procedure that supports the
reparametrization trick. First, we can unroll a fixed number
of steps of HMC for the distribution (1), where we ignore
the accept-reject step (Salimans et al., 2015). Similarly, we
could unroll sampling by Langevin dynamics (Welling &
Teh, 2011). Our experiments employ an even simpler pre-
dictor: we randomly sample the location for y where deter-
ministic gradient-based energy minimization is initialized.

This randomized predictor is attractive because we can use
the exact code used for end-to-end learning in Belanger
et al. (2017), where we specify a certain number of gra-
dient steps to be taken in advance, and we learn sepa-
rate per-iteration learning rates. Note that we may learn
a randomized prediction procedure that yields diverse pre-
dictions even if the associated energy is uni-modal, as an
unrolled predictor performing truncated in-complete opti-
mization will terminate at multiple locations.

6. Experiments

6.1. Experimental Setup

We consider synthetic data sampled from a conditional
Gaussian mixture model (GMM) with 2 components:

P(y|x) = 1

2

N(y;µ1,�
2
) +

1

2

N(y;µ2,�
2
), (5)

where N(y;µ,�2
) is the density for a multi-variate Gaus-

sian with mean vector µ and covariance �

2
I . We employ

µ1 = A1x and µ2 = A2x. We generate data by sam-
pling a 5-dimensional x from N(0, 1) and then sampling
y. We generate our dataset such that for each x we include
25 (x,y) pairs, where y is drawn from P(y|x). Therefore,
for a given x we can visualize both the data associated with
it and also the conditional energy function E

x

(y).

We choose the data-generating parameters such that sam-
ples nearly always occur within [0, 1]

2. When perform-
ing SMLE learning, we explicitly constrain the HMC it-
erates to this set. This can be achieved by performing un-
constrained HMC in a reparametrized distribution over R2

with a density defined by multiplying (1) by the determi-
nant of Jacobian of the sigmoid transformation from R2 to
[0, 1]

2 (Stan Development Team, 2015, p. 391). For end-
to-end learning, we do not constrain the iterates.

For energies fit using SMLE, we form predictions at test
time using the same sampling approach used by the ran-
domized unrolled optimizer we train end-to-end. We found
that this is superior to sampling from (1). For SMLE, we
find test performance is slightly improved by using back-
tracking line search during test-time energy minimization.

For SMLE, we first burn in HMC using 25 leapfrog tra-
jectories for each x-y pair. Then, we take 10 addi-
tional leapfrog trajectories, where each consists of 5 steps.
For each sample, we compute a gradient with respect
to the model parameters. Our HMC step size is incre-
mented/decremented on the fly such that proposals are ac-
cepted approximately 75% of the time. For end-to-end
learning, we unroll for 10 gradient steps and treat our per-
step learning rates as trainable parameters. For all methods,
the outer loop of optimization with respect to the model pa-
rameters is performed using Adam (Kingma & Ba, 2015).

6.2. SPEN Architectures

We employ two different architectures when fitting our
GMM data. The first, which we refer to as a GMM energy,
hard-codes the functional form of the conditional density
of the true data-generating process:

E

x

(y) = log

X

i=1,2

1

2

N(y;µ
i

,�

2
i

) (6)

µ
i

= A

i

x+ b

i

(7)

Here, the trainable parameters are weights A

i

, biases b

i

,
and �

i

. This architecture can be seen as a mixture den-
sity network (Bishop, 1994). We found that this energy is
vulnerable in practice to collapsing modes: if the two mix-
ture components ever coincide, learning will not be able to
tease them apart afterwards. We avoid this by initializing
the biases b

i

to be well-separated.

Second, we employ a generic MLP energy. First, consider
an MLP defined just on y.

E(y) = a

>
3 g(A2g(A1y + b1) + b2). (8)

Here, g is a coordinate-wise non-linearity.For SMLE we
use a ReLU, and when performing end-to-end learning, this
must be converted to a SoftPlus (Belanger et al., 2017).

We have found that (8) works well for un-conditional esti-
mation of data drawn from a GMM. To extend this to be a
conditional energy function, we can concatenate y and x as
inputs to (8). Unfortunately, this does not work particularly
well. Instead, it is significantly better to employ a hypernet-
work, where a subnetwork predicts the weights to be used
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in the main network. See Ha et al. (2017) for a thorough
overview of the history of architectures and learning meth-
ods for hypernetworks. We employ an architecture that is
identical to (8), except that the weights and biases in the
first layer of the MLP are a function of x.

E

x

(y) = a

>
3 g(A2g(A1(x)y + b1(x)) + b2), (9)

where A1(x) is a matrix defined by contracting a learned
3-dimensional tensor with x and b1(x) is a vector obtained
by contracting a learned 2-dimensional tensor with x.

6.3. Results

First, in Fig. 1 we plot energy functions learned by SMLE.
The columns correspond to different values of x. For each
x, our dataset contains multiple samples for y. These sam-
ples are red dots in the figures. The color scale of the fig-
ures is such that yellow is high energy and dark blue is low
energy. In the top row, we fit a GMM energy function and
in the bottom row we fit an MLP energy. In general, we
found our learned MLP energies to be uni-modal. They
generally capture the envelope of the data, but incorrectly
assign low energy to the entire region between the two clus-
ters of data. Consequently, energy minimization yields a
prediction that is in the middle of the two modes. We do
not plot the predictions made by energy minimization as
they reliably end in the local minimia of the energy.

Next, in Fig. 2 we perform the same experiment, but es-
timate our energy function using end-to-end minimization
of the Oracle-8 loss. The black lines are trajectories taken
by our learned randomized optimizer. For both the GMM
and MLP energies, the trajectories reliably end near one of
the data’s clusters. In some cases, the learned energy ap-
pears to be uni-modal, but the predictions are multi-modal.
This is because we learned our optimizer hyperparameters
alongside our energy function such that truncated energy
minimization yields high-quality sets of predictions.

In Tab. 1 we evaluate our methods in terms of their Oracle-
8 performance. We contrast SMLE vs. E2E-8 training
and MLP vs. GMM energy functions. Remarkably, our
best performance is obtained using an MLP energy with
E2E-8 training. We struggle to achieve reasonable perfor-
mance using an MLP energy with SMLE training, as the
learned energy is typically unimodal (see bottom row of
Tab. 1). As a result, randomized prediction always predicts
a point that is mid-way between the two clusters. In gen-
eral, we found E2E-8 training substantially easier to tune
than HMC-based SMLE. We are unsure why we generally
achieve worse performance with the GMM energy vs. the
MLP energy. Perhaps the quadratic GMM energy is too
steep, and this hinders adequate exploration.

Figure 1. Learned energy functions from stochastic MLE training.
Each column uses a different value of x, from which we draw
multiple samples of y from a conditional GMM. Top row: GMM
energy function. Bottom row: MLP energy function.

Figure 2. Energy functions learned by end-to-end minimization
of Oracle-8 loss. Each column uses a different value of x, from
which we draw multiple samples of y from a conditional GMM.
Top row: GMM energy function. Bottom row: MLP energy func-
tion. Black lines are trajectories from the randomized optimizer.

Training Method MLE MLE E2E-8 E2E-8

Architecture GMM MLP GMM MLP

Oracle-8 cost 0.007 0.040 0.004 0.002

Table 1. Oracle-8 performance

7. Conclusion

This paper presents preliminary experiments using a
method for training a randomized energy-based predic-
tor end-to-end. The technique is a conceptually-attractive
alternative to conditional density estimation that is more
straightforward to tune in practice and yields superior per-
formance. In future work, we will apply our techniques to
high-dimensional structured prediction problems. The hy-
pernetwork approach of Sec. 6.2 may also be of interest for
additional SPEN applications.
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